1
|
Prebihalo EA, Reineke TM. Natural Product-Based Pressure-Sensitive Adhesives via Carveol-Dithiothreitol Thiol-Ene Step-Growth Polymerization. ACS Macro Lett 2024; 13:1355-1361. [PMID: 39321342 DOI: 10.1021/acsmacrolett.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Pressure-sensitive adhesives occupy a large role in the commercial use of polymers; however, they are typically limited to nondegradable formulations using petroleum-based materials. As the plastic and environmental crises have intensified, the need for renewable starting materials and degradable designs has similarly deepened. With that goal, we endeavored to make adhesive films from renewable terpenes as a safer and more sustainable route to PSAs. Specifically, based on our previous report of the cross-linking ability of a carveol-based carbonate through thiol-ene chemistry, we report further exploration of the adhesive possibilities of this system. A carbonate monomer of dimerized carveol was linearly polymerized with dithiothreitol via UV-initiated thiol-ene chemistry and formed into adhesive coatings, with unmodified geraniol doped in as a tackifier. We obtained a range of adhesive properties based on the ratio of exo-methylene to thiol units and reported on the degradation of the adhesive coatings.
Collapse
Affiliation(s)
- Emily A Prebihalo
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Wu T, Zhang H, Jin Y, Zhang M, Zhao Q, Li H, Wang S, Lu Y, Chen S, Du H, Liu T, Guo W, Liu W. The active components and potential mechanisms of Wuji Wan in the treatment of ethanol-induced gastric ulcer: An integrated metabolomics, network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117901. [PMID: 38341112 DOI: 10.1016/j.jep.2024.117901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wuji Wan (WJW) is a traditional Chinese medicine formula that can be found in the "Prescriptions of Taiping Benevolent Dispensary" that has been employed in treating gastric discomfort, burning epigastric pain, and gastric reflux for hundreds of years and has shown promise for treating gastric ulcers (GUs). However, the active components and mechanism of action against GUs remain unclear. AIM OF THE STUDY The aim of this study was to explore the active components of WJW and elucidate the underlying mechanism involved in treating GUs. MATERIALS AND METHODS Initially, cell viability was measured by a cell counting kit 8 (CCK-8) assay to evaluate the efficacy of WJW-containing serum in vitro. The gastric ulcer index, ulcer inhibition rate, hematoxylin and staining (H&E), and periodic acid-Schiff (PAS) staining were used to evaluate the therapeutic effect of WJW in vivo. Subsequently, the levels of inflammatory factors and oxidative stress factors were determined using an enzyme-linked immunosorbent assays (ELISA) on in vitro and in vivo samples. Additionally, UPLC-Q Exactive Plus Orbitrap HRMS was used to analyze the components that were absorbed into the blood of WJW and its metabolites. Network pharmacology and metabolomics were subsequently used to identify the targets and pathways. Real-time quantitative PCR (RT‒qPCR) and Western blotting were used to verify the mRNA and protein levels of the key targets and pathways. Finally, the active components were identified by molecular docking to verify the binding stability of the components and key targets. RESULTS WJW-containing serum ameliorated ethanol-induced damage in GES-1 cells and promoted cell healing. WJW-containing serum reduced IL-6, TNF-α, MDA, and LDH levels while increasing IL-10, SOD, and T-AOC levels in the cells. Moreover, WJW treatment resulted in decreased IL-6, TNF-α, and MDA levels and increased IL-10, SOD, PGE2, and NO levels in GUs rats. In addition, eight components of WJW were absorbed into the blood. The network pharmacology results revealed 192 common targets for blood entry components and GUs, and KEGG analysis revealed that apoptosis signaling pathways were the main pathways involved in WJW activity against GUs. Metabolomic screening was used to identify 13 differential metabolites. There were 23 common targets for blood entry components, GUs, and differential metabolites, with the key targets TNF (TNF-α), AKT1, PTGS2 (COX2) and MAPK1. WJW significantly inhibited the expression of Bax, Caspase-9, Caspase-3, cleaved Caspase-9, cleaved Caspase-3, TNF-α, COX2, and p-p44/42 MAPK while promoting the expression of Bcl-2 and p-AKT1. Molecular docking revealed that the active components of WJW for the treatment of GUs are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. CONCLUSIONS WJW treatment reduces inflammation and oxidative stress injury and inhibits apoptosis signaling pathways. The main active components are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. In this paper, we provide a new strategy for exploring the active components of traditional Chinese medicine formulas for the treatment of diseases based on target mechanisms.
Collapse
Affiliation(s)
- Tiantai Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China
| | - Huan Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yang Jin
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Ming Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Qing Zhao
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Herong Li
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shouli Wang
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Shuaishuai Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Huakang Du
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Weiyu Guo
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Wen Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
3
|
Badshah I, Qazi NG, Anwar M, Shaukat B, Khan MI, Murtaza B. Carveol mitigates the development of the morphine anti-nociceptive tolerance, physical dependence, and conditioned place preference in mice. Heliyon 2024; 10:e27809. [PMID: 38496833 PMCID: PMC10944274 DOI: 10.1016/j.heliyon.2024.e27809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Emergence of analgesic tolerance and dependence to morphine is frequently the limiting factor in the use of this agent in the management of pain. Hence, this study aimed to investigate the beneficial effects of the natural compound carveol (CV) against morphine antinociceptive tolerance, dependence and conditioned place preference (CPP) in mice. Behavioural paradigms included hot plate and tail-flick (for tolerance), observation of withdrawal signs (for dependence) while biochemical tests involved the assays for mRNA expression, nitrite levels, antioxidants, and immunohistochemistry studies. Behavioural tests indicated that treatment with CV significantly attenuated the morphine analgesic tolerance, physical dependence and CPP in mice. It was observed during biochemical analysis that CV-treated animals exhibited reduced mRNA expression of inducible nitric oxide synthase (iNOS) and NR2B (an NMDA subtype). In addition, decreased levels of nitrite were observed in mouse hippocampus following CV treatment than morphine administration only. Further, CV enhanced the neuronal innate antioxidants including Glutathione-S-Transferase (GST), glutathione (GSH) and catalase (CAT), while curtailed lipid peroxidase (LPO) levels in mice brain tissues. Moreover, CV exerted significant anti-inflammatory effects as evidenced by reduced expression of TNF-α and p-NF-κB in these animals than with morphine treatment only. Together, anti-inflammatory and antioxidant effects might confer needed neuro-protection following morphine administration. These observations warrant further investigations of the beneficial role of CV as a novel agent in overcoming the development of tolerance and physical dependence following morphine use.
Collapse
Affiliation(s)
- Ismail Badshah
- Riphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| | - Neelum Gul Qazi
- Department of Pharmacy, Iqra University, Islamabad, Pakistan
| | - Maira Anwar
- Riphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| | - Bushra Shaukat
- Department of Pharmacy, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran Khan
- Department of Biomedical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan
| | - Babar Murtaza
- Riphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| |
Collapse
|
4
|
Elshibani F, Alamami A, Khan R, Sulaiman GM, Mohammed HA. Haplophyllum tuberculatum (Forssk.) A. Juss Essential Oils: Seasonal Contents Variation, Bioactivity of the Traditionally-favored, High-yield and Frequent-use Summer Season Oil. J Oleo Sci 2024; 73:263-273. [PMID: 38233115 DOI: 10.5650/jos.ess23055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Haplophyllum tuberculatum (Forssk.) A.Juss. volatile oils were obtained by distillation of the aerial parts of the plant growing in Libya during the summer and spring seasons. A yield and componential analysis revealed that the summer season oil, which is frequently used in traditional medicaments by North African communities, was high in yield (0.858%) compared to the spring season oil (0.47%), and distinguished by the presence of major and various diverse constituents, some of which are considered chemical markers. Owing to the traditional and high incidence of use of the summer-produced essential oil for the treatment of several disorders, including hepatic diseases, and fatigue, the oil was pharmacologically investigated for its varied bioactivities of anti-microbial, in vivo anti-oxidant, and in vitro anti-cancer properties. Thirty-three compounds were identified and represented 96.2% of the peaks in the GCchromatogram of the summer oil, in which the major volatile constituents were δ-3-carene (21.5%), bornyl acetate (16.9%), and limonene aldehyde (15.2%). The summer-based essential oil of the plant demonstrated moderate anti-bacterial activity against Gram-positive bacteria and a relatively strong antibacterial effect against Gram-negative bacteria as compared to the positive antibacterial controls, ampicillin and gentamicin, respectively. Also, antifungal activity against Aspergillus sp. was observed. The summerproduced oil also exhibited in vivo antioxidant and in vitro anti-cancer activities.
Collapse
Affiliation(s)
- Fatma Elshibani
- Department of Pharmacognosy, Faculty of Pharmacy, University of Benghazi
- Department of Pharmacognosy, Faculty of Pharmacy, Assalam International University
| | - Abdullah Alamami
- Department of Basic Medical Sciences, Faculty of Pharmacy, University of Benghazi
| | - Riaz Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University
- Manav Rachna International Institute of Research and Study (MRIIRS, formerly Manav Rachna International University, MRIU)
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University
| |
Collapse
|
5
|
Wu Y, Guo Y, Huang T, Huang D, Liu L, Shen C, Jiang C, Wang Z, Chen H, Liang P, Hu Y, Zheng Z, Liang T, Zhai D, Zhu H, Liu Q. Licorice flavonoid alleviates gastric ulcers by producing changes in gut microbiota and promoting mucus cell regeneration. Biomed Pharmacother 2023; 169:115868. [PMID: 37952360 DOI: 10.1016/j.biopha.2023.115868] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Licorice flavonoid (LF) is the main component of Glycyrrhizae Radix et Rhizoma, a "medicine food homology" herbal medicine, which has anti-digestive ulcer activity, but the mechanism in anti-gastric ulcer (GU) remains to be elucidated. In this study, we manifested that LF increased the viability of human gastric mucosal epithelial (GES-1) cells, attenuated ethanol (EtOH)-induced manifestations, reduced histological injury, suppressed inflammation, and restored gastric mucosal barrier in GU rats. After LF therapy, the EtOH-induced gut dysbiosis was partly modulated, and short-chain fatty acids (SCFAs) like butyric acid, propionic acid, and valeric acid were found in higher concentrations. We discovered that the majority of genera that increased in the GU group had a negative correlation with SCFAs in the intestinal tract. In addition, LF-upregulated SCFAs boosted mucus secretion in the gastric epithelium and the expression of mucoprotein (MUC) 5AC and MUC6, particularly the MUC5AC in the gastric foveola. Moreover, LF triggered the EGFR/ERK signal pathway which promoted gastric mucus cell regeneration. Therefore, the findings indicated that LF could inhibit inflammation, promote mucosal barrier repair and angiogenesis, regulate gut microbiota and SCFA metabolism; more importantly, promote epithelial proliferation via activation of the EGFR/ERK pathway, exerting a protective and regenerative effect on the gastric mucosa.
Collapse
Affiliation(s)
- Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yinglin Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tairun Huang
- Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Dehao Huang
- Huizhou Jiuhui Pharmaceutical Co., Ltd., Huizhou 516000, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongkai Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Peiyi Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zeying Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dan Zhai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Liu D, Liu R, Zhuang Z, Yao B, Qin C, Ma F, Shi J. Preparation of Self-microemulsion Solids of Kaempferia galanga (L.) Volatile Oil and Its Effect on Rats with Gastric Ulcer. AAPS PharmSciTech 2023; 24:243. [PMID: 38030940 DOI: 10.1208/s12249-023-02693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Kaempferia galanga volatile oil (KVO), the main effective component of the medicinal plant Kaempferia galanga L., possesses a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-angiogenic activities and has therapeutic potential for gastric ulcer (GU). However, poor solubility as well as instability limits the clinical application of KVO. In this study, K. galanga volatile oil self-microemulsion solids (KVO-SSMEDDS) were prepared to improve its bioavailability and stability, and the therapeutic effects were evaluated in a rat model with GU. The ratio of oil phase, emulsifier, and co-emulsifier in the KVO-SMEDDS prescription were optimized by plotting the pseudo-ternary phase diagram with the star point design-response surface method. Based on the optimal prescription, self-microemulsifying drug delivery system (SMEDDS) was prepared as solid particles (S-SMEDDS). The prepared KVO-SSMEDDS had a rounded and non-adhesive appearance, formed an O/W emulsion after dissolution in water, and had a uniform particle size distribution with good stability and solubility. It was administered to GU model animals, and the results showed that a certain dose of KVO-SSMEDDS solution could increase the content of gastric mucosal protective factors PGE2, TGF-α, and EGF in gastric tissues and serum, and the expression of inflammatory factors IL-8 and TNF-α was downregulated. Meanwhile, the expression of the NF-κB/COX-2 pathway proteins was inhibited. In conclusion, the prepared KVO-SSMEDDS has good dispersion, solubility, and stability and has a therapeutic effect on rats with GU.
Collapse
Affiliation(s)
- Dongrong Liu
- School of Chinese Material Medica, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, Guangdong, China
| | - Ruiping Liu
- School of Chinese Material Medica, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, Guangdong, China
| | - Zebin Zhuang
- School of Chinese Material Medica, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, Guangdong, China
| | - Bijin Yao
- School of Chinese Material Medica, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, Guangdong, China
| | - Chuyue Qin
- School of Chinese Material Medica, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, Guangdong, China
| | - Fangli Ma
- Faculty of Rehabilitation & Medical Science, Guangzhou International Economics College, No. 28 Dayuan North Road, Shatai Road, Guangzhou, 510540, Guangdong, China.
| | - Jun Shi
- School of Chinese Material Medica, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, Guangdong, China.
- Engineering & Technology Research of Topical Precise Drug Delivery System, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Qu Z, Jiang D, Liu Y, Hou M. Liuwei Anxiao San protects gastric mucosa from gastric ulcer in rats by regulating the JAK2/STAT3 pathway. Tissue Cell 2023; 83:102145. [PMID: 37437331 DOI: 10.1016/j.tice.2023.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Mongolian medicine prescriptions are recognized as promising gastroprotective agents. This study is to explore the effects and mechanisms of Liuwei Anxiao San (LAS) in gastric ulcer (GU). GU rat models were established using acetic acid, followed by treatment with LAS at different doses and/or the JAK2 agonist Coumermycin A1 (CA1). The ulcerous area and inhibition rates were calculated. The mucosal damage and cell apoptosis in gastric tissues were assessed by H&E and TUNEL staining. The activities of SOD, GSH-Px, and CAT, and MDA levels were measured. The levels of pro-inflammatory and anti-inflammatory factors were determined by ELISA. The activation of the JAK2/STAT3 pathway was determined by Western blot. As the results suggested, LAS dose-dependently ameliorated gastric mucosal damage and inhibited oxidative stress and inflammatory response, evidenced by increased activities of SOD, GSH-Px, and CAT, decreased MDA level, increment of anti-inflammatory factors and decrement of pro-inflammatory factors, and inhibited the activation of the JAK2/STAT3 pathway in GU rats. CA1 partly abolished the function of LAS on gastric mucosal injury, oxidative stress, and inflammation in GU rats. In conclusion, LAS protects against gastric mucosal injury in GU rats through inhibition of oxidative stress and inflammation by suppressing the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Ze Qu
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; Geriatrics Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Dong Jiang
- Hand and Foot Microscopy Center, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Yan Liu
- Department of Medical Administration, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Mingxing Hou
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, No. 5, Xinhua West Street, Huimin District, Hohhot, Inner Mongolia 010050, China.
| |
Collapse
|
8
|
Lane TR, Harris J, Urbina F, Ekins S. Comparing LD 50/LC 50 Machine Learning Models for Multiple Species. ACS CHEMICAL HEALTH & SAFETY 2023. [DOI: 10.1021/acs.chas.2c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Joshua Harris
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
9
|
Alves NM, Nunes PHM, Mendes Garcez A, Lima de Freitas MC, Oliveira IS, da Silva FV, Fernandes HDB, de Sousa DP, Oliveira RDCM, Arcanjo DDR, Martins MDCDCE. Antioxidant Mechanisms Underlying the Gastroprotective Effect of Menthofuran on Experimentally Induced Gastric Lesions in Rodents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9192494. [PMID: 37064952 PMCID: PMC10104745 DOI: 10.1155/2023/9192494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/30/2022] [Accepted: 01/23/2023] [Indexed: 04/18/2023]
Abstract
Menthofuran is a monoterpene present in various essential oils derived from species from Mentha genus, and in Brazil, those species are widely used in treating gastrointestinal and respiratory disorders. Considering the wide pharmacological potential of monoterpenes, including their antioxidant activity, this study aimed to evaluate menthofuran-gastroprotective activity, as well as the involvement of antioxidant mechanisms in this effect. The acute toxicity was evaluated according to the fixed dose method. The antiulcerogenic activity was investigated by using experimental models of gastric ulcers induced by ethanol, indomethacin, and ischemia/reperfusion in rats. The antisecretory gastric activity, the catalase activity, and the gastric wall mucus were determined in pylorus ligated rats. Gastric wall nonprotein sulfhydryl (NPSH) group content, myeloperoxidase (MPO) activity, and malondialdehyde (MDA) content were evaluated in ethanol-induced the gastric ulcer model. Menthofuran (2 g/kg) presented low acute toxicity and showed gastroprotective activity against ethanol-, indomethacin-, and ischemia/reperfusion-induced ulcers. Moreover, menthofuran presented antisecretory activity, reduced the total acidity, and increased pH of gastric secretion. On the other hand, a decrease in mucus content of gastric wall without alteration of gastric juice volume and catalase activity was observed. Interestingly, menthofuran increased NPSH levels and reduced MDA levels and MPO activity. Gastroprotective effects of menthofuran appear to be mediated, at least in part, by the NOS pathway, endogenous prostaglandins, reduced gastric juice acidity, increased concentration of the NPSH groups, and reduced lipidic peroxidation. These findings support the menthofuran as an effective gastroprotective agent, as well as the marked participation of antioxidant mechanisms in this response.
Collapse
Affiliation(s)
- Naira Moura Alves
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Paulo Humberto Moreira Nunes
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI, Brazil
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, PI, Brazil
| | - Anderson Mendes Garcez
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, PI, Brazil
| | | | | | | | - Hélio de Barros Fernandes
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI, Brazil
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Rita de Cássia Meneses Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI, Brazil
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Maria do Carmo de Carvalho e Martins
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI, Brazil
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, PI, Brazil
| |
Collapse
|
10
|
Protective Effect of Foxtail Millet Protein Hydrolysate on Ethanol and Pyloric Ligation-Induced Gastric Ulcers in Mice. Antioxidants (Basel) 2022; 11:antiox11122459. [PMID: 36552666 PMCID: PMC9774519 DOI: 10.3390/antiox11122459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Foxtail millet has been traditionally considered to possess gastroprotective effects, but studies evaluating its use as a treatment for gastric ulcers are lacking. Here, we assessed the antiulcer effects of foxtail millet protein hydrolysate (FPH) and explored its mechanism by using blocking agents. In a mouse model of ethanol-induced gastric ulcers, pretreatment with FPH reduced the ulcerative lesion index, downregulated the expression of inflammatory cytokines in the gastric tissue, increased the activity of antioxidant enzymes, and improved the oxidative status. FPH increased constitutive the activity of nitric oxide synthase (cNOS), NO levels, and mucin expression in gastric mucosa, and inhibited the activation of the ET-1/PI3K/Akt pathway. In a mouse model of pyloric ligation-induced gastric ulcers, FPH inhibited gastric acid secretion and decreased the activity of gastric protease. Pretreatment of mice with the sulfhydryl blocker NEM and the NO synthesis inhibitor L-NAME abolished the gastroprotective effect of FPH, but not the KATP channel blocker glibenclamide and the PGE2 synthesis blocker indomethacin. Among the peptides identified in FPH, 10 peptides were predicted to have regulatory effects on the gastric mucosa, and the key sequences were GP and PG. The results confirmed the gastroprotective effect of FPH and revealed that its mechanism was through the regulation of gastric mucosal mucus and NO synthesis. This study supports the health effects of a millet-enriched diet and provides a basis for millet protein as a functional food to improve gastric ulcers and its related oxidative stress.
Collapse
|
11
|
Saqib S, Ullah F, Naeem M, Younas M, Ayaz A, Ali S, Zaman W. Mentha: Nutritional and Health Attributes to Treat Various Ailments Including Cardiovascular Diseases. Molecules 2022; 27:molecules27196728. [PMID: 36235263 PMCID: PMC9572119 DOI: 10.3390/molecules27196728] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
A poor diet, resulting in malnutrition, is a critical challenge that leads to a variety of metabolic disorders, including obesity, diabetes, and cardiovascular diseases. Mentha species are famous as therapeutic herbs and have long served as herbal medicine. Recently, the demand for its products, such as herbal drugs, medicines, and natural herbal formulations, has increased significantly. However, the available literature lacks a thorough overview of Mentha phytochemicals' effects for reducing malnutritional risks against cardiovascular diseases. In this context, we aimed to review the recent advances of Mentha phytochemicals and future challenges for reducing malnutritional risks in cardiovascular patients. Current studies indicated that Mentha species phytochemicals possess unique antimicrobial, antidiabetic, cytotoxic, and antioxidant potential, which can be used as herbal medicine directly or indirectly (such as food ingredients) and are effective in controlling and curing cardiovascular diseases. The presence of aromatic and flavor compounds of Mentha species greatly enhance the nutritional values of the food. Further interdisciplinary investigations are pivotal to explore main volatile compounds, synergistic actions of phytochemicals, organoleptic effects, and stability of Mentha sp. phytochemicals.
Collapse
Affiliation(s)
- Saddam Saqib
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif 12080, AJ&K, Pakistan
| | - Fazal Ullah
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muhammad Naeem
- China Sinovita Bioengineering Group, Jinan 250000, China
| | - Muhammad Younas
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif 12080, AJ&K, Pakistan
| | - Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (S.A.); (W.Z.)
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (S.A.); (W.Z.)
| |
Collapse
|
12
|
Yildirim C, Cevik S, Yamaner H, Orkmez M, Eronat O, Bozdayı MA, Erdem M. Boric acid improves the behavioral, electrophysiological and histological parameters of cisplatin-induced peripheral neuropathy in rats. J Trace Elem Med Biol 2022; 70:126917. [PMID: 34963081 DOI: 10.1016/j.jtemb.2021.126917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Boric acid (BA) has been used in many diseases because it increases the amount of reduced glutathione in the body and reduces oxidative damage. This study aims to investigate the effects of boric acid in cisplatin-induced neuropathy, in which oxidative stress is also effective in its pathophysiology. In this study, 8-10 weeks old, 170-190 g Wistar Albino rats were used. Each group contained seven rats (n = 35). Experimental groups consist of control, sham, neuropathy, treatment, and boric acid groups. For the neuropathy model, a single dose of cisplatin (3 mg/kg, i.p) was administered once a week for five weeks, and for the treatment group, boric acid was administered daily (100 mg/kg, intragastric) for five weeks. After drug administration, the rotarod test to evaluate motor performance, the tail-flick and hot/cold plate tests to evaluate sensory conduction states, the von Frey filament test to evaluate the mechanical allodynia, and the adhesive removal test to assess sensorimotor function were performed. The sciatic nerve's motoric conduction velocity was also assessed electrophysiologically. Oxidative stress parameters were also assessed biochemically in sciatic nerve tissue and serum. Hematoxylin and eosin staining was used to evaluate the sciatic nerve tissue histopathologically. The motor conduction velocity of the sciatic nerve, impaired by cisplatin, was increased considerably by boric acid (p < 0.05). It also reduced the latency time of the compound muscle action potential (CMAP), which was increased by cisplatin. (p < 0.05). The von Frey filament test results demonstrated increased pain sensitivity of the cisplatin group increased, and mechanical allodynia was observed. Boric acid significantly alleviated this condition (p < 0.05). In the cold plate, adhesive removal, and rotarod tests, boric acid attenuated the adverse effects of cisplatin (p < 0.05). Biochemically, BA reduced the level of MDA, which was raised by cisplatin, and significantly increased the level of SOD, which was lowered by cisplatin (p < 0.05). Histopathologically; BA reduced neuronal degeneration and vacuolization caused by cisplatin. As a consequence, it has been determined that boric acid alleviates the adverse effects of cisplatin. BA reduced the destructive effect of cisplatin by reducing oxidative stress, and this effect was verified electrophysiologically, behaviorally, and histopathologically.
Collapse
Affiliation(s)
- Caner Yildirim
- Gaziantep University, Faculty of Medicine, Department of Physiology, Gaziantep, Turkey.
| | - Sena Cevik
- Gaziantep University, Faculty of Medicine, Department of Physiology, Gaziantep, Turkey.
| | - Hatice Yamaner
- Gaziantep University, Faculty of Medicine, Department of Physiology, Gaziantep, Turkey.
| | - Mustafa Orkmez
- Gaziantep University, Faculty of Medicine, Department of Medical Biochemistry, Gaziantep, Turkey.
| | - Omer Eronat
- Gaziantep University, Faculty of Medicine, Department of Pathology, Gaziantep, Turkey.
| | - Mehmet Akif Bozdayı
- Gaziantep University, Faculty of Medicine, Department of Medical Biochemistry, Gaziantep, Turkey.
| | - Mehmet Erdem
- Gaziantep University, Vocational School of Health Services, Gaziantep, Turkey.
| |
Collapse
|
13
|
Zhang L, Chen Y, Li Z, Li X, Fan G. Bioactive properties of the aromatic molecules of spearmint (Mentha spicata L.) essential oil: a review. Food Funct 2022; 13:3110-3132. [DOI: 10.1039/d1fo04080d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spearmint belongs to the genus Mentha in the family Labiateae (Lamiaceae), which is wildly cultivated worldwide for its remarkable aroma and commercial value. The aromatic molecules of spearmint essential oil,...
Collapse
|