1
|
Zhu X, Lu H, Jia H, Wei X, Xue J, Li W, Zhang J, Wang Y, Yan J, Sun H, Ge Y, Zhang Z. Ferrostatin-1 reduces the inflammatory response of rheumatoid arthritis by decreasing the antigen presenting function of fibroblast-like synoviocytes. J Transl Med 2025; 23:280. [PMID: 40050869 PMCID: PMC11884008 DOI: 10.1186/s12967-025-06300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/23/2025] [Indexed: 03/10/2025] Open
Abstract
Rheumatoid arthritis (RA) is a systemic chronic autoimmune disease with complex mechanism. Currently, ferroptosis is believed to play a role in it, but the specific mechanism is unknown, especially in immune response. In this study, we demonstrated that the high expression of major histocompatibility complex I (MHC-I) molecules in RA fibroblast-like synoviocytes (FLSs) is an antigen-presenting cell property and that this property is closely related to the increase in antigens after citrullination. Moreover, we detected higher levels of ferroptosis among FLSs from RA patient than among FLSs from OA patients. Ferroptosis can increase the expression of citrullinated histone H3 (cit-h3) by promoting the production of peptidyl arginine deiminase 4 (PAD4), which further promotes the expression of MHC-I molecules. We cocultured RA-FLSs treated with ferroptosis drugs with selected CD8 + T cells to assess the effect of ferroptosis on the endogenous antigen-presenting function of RA-FLSs. Ferroptosis promoted the proliferation of CD8 + T cells and the release of the inflammatory factors Tumor necrosis factor-α (TNF-α) and Interferon-gamma (IFN-γ), which enhanced the inflammatory effect. This phenomenon was also observed in a collagen-induced arthritis (CIA) mouse model. Finally, ferrostatin-1 (fer-1), a ferroptosis inhibitor, inhibited the above effects and reduced the release of inflammatory factors, indicating that ferroptosis may play a therapeutic role in RA and providing new ideas for the treatment of RA in the field of immunity.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanya Lu
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haonan Jia
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuemin Wei
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Xue
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Li
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Juan Zhang
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanli Wang
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingyao Yan
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoyuan Sun
- Department of Osteology, Heilongjiang Provincial Hospital, Harbin, China
| | - Yanlei Ge
- Department of Respiratory Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhiyi Zhang
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Shi WQ, Li B, Shao Y, Han W, Xu Y, Jiang Q, Qu S, Zhou X, Bi Y. EFEMP1-Mediated Regulation of Choroidal Vascular Dysfunction in Myopia: Insights Into the FOXO3/VEGFA Pathway as a Therapeutic Target. Invest Ophthalmol Vis Sci 2025; 66:43. [PMID: 40111354 PMCID: PMC11932429 DOI: 10.1167/iovs.66.3.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025] Open
Abstract
Purpose This study investigates the role of EFEMP1 in choroidal vascular dysfunction and its implications for myopia progression, specifically focusing on the FOXO3/VEGFA signaling pathway as a potential therapeutic target. Methods We utilized adeno-associated virus (AAV) to overexpress and knock down EFEMP1 in the choroid of guinea pigs. Subsequent proteomic analyses were conducted on the choroidal tissue. We used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to identify relevant pathways and genes. In vitro experiments were performed on RF/6A cells, where both EFEMP1 and FOXO3 underwent overexpression and knockdown. We conducted a series of cell culture experiments, including assessments of cell proliferation, migration, tube formation, and choroidal sprouting assays, to evaluate the functional effects of EFEMP1. Quantitative reverse transcription PCR and Western blot analyses were utilized to measure gene and protein expression levels. Results Silencing EFEMP1 significantly reduced choroidal vascular dysfunction and slowed the progression of myopia. Proteomic analysis demonstrated that EFEMP1 regulates FOXO3 activity, resulting in increased VEGFA expression in RF/6A cells and promoting angiogenesis. Conversely, knockdown of FOXO3 led to decreased VEGFA levels, confirming that EFEMP1 modulates VEGFA expression through FOXO3. Conclusions Targeting EFEMP1 may offer a novel therapeutic strategy for the prevention and treatment of myopia by alleviating associated vascular dysregulation. Further exploration of the FOXO3/VEGFA pathway could provide additional insights into therapeutic interventions for myopia.
Collapse
Affiliation(s)
- Wen-Qing Shi
- Department of Ophthalmology, Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Bing Li
- Department of Ophthalmology, Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yuting Shao
- Department of Ophthalmology, Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wenting Han
- Department of Ophthalmology, Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yule Xu
- Department of Ophthalmology, Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qing Jiang
- Department of Ophthalmology, Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Shen Qu
- Department of Ophthalmology, Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaodong Zhou
- Department of Ophthalmology, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Li S, Fang HX, Wan L, Liu J. Role of Non-coding RNAs in Rheumatoid Arthritis and Supervision Mechanism of Chinese Medicine. Chin J Integr Med 2025:10.1007/s11655-025-4207-0. [PMID: 39776040 DOI: 10.1007/s11655-025-4207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 01/11/2025]
Abstract
The prevalence of rheumatoid arthritis (RA) has sharply increased in recent years, posing a serious threat to human health. RA is characterized as a chronic, multisystem disease with morning stiffness and symmetric small joint pain. However, its fundamental processes are poorly understood. With the advancements in molecular biology techniques, a growing body of research indicates that numerous non-coding RNAs (ncRNAs) are essential for the pathogenesis of RA. These ncRNAs not only contribute to the onset of RA but also play a role in the pathological processes of RA development, including synovial immune inflammation and bone destruction. Chinese medicine (single compounds, single herbs, and compound formulae, as well as non-drug therapies such as acupuncture and moxibustion), offer significant benefits for treating RA. This study examined the role of 3 different ncRNA types (circular RNA, long ncRNA, and microRNA) as biomarkers in RA diagnosis, as well as their regulatory roles in rheumatoid arthritis fibroblast-like synoviocytes functions such as inflammatory response, proliferation, cell cycle, apoptosis, and invasion. Additionally, the study explored the mechanisms by which Chinese medicine regulates these ncRNAs, with the goal of offering innovative strategies for RA treatment.
Collapse
Affiliation(s)
- Shu Li
- Department of Rheumalogy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Hao-Xiang Fang
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Lei Wan
- Department of Rheumalogy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
- Xin'an Institute of Medicine and Modernization of Traditional Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medical Education Department, Hefei, 230012, China.
| | - Jian Liu
- Department of Rheumalogy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Xin'an Institute of Medicine and Modernization of Traditional Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medical Education Department, Hefei, 230012, China
| |
Collapse
|
4
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Anjiki K, Hayashi S, Ikuta K, Suda Y, Kamenaga T, Tsubosaka M, Kuroda Y, Nkano N, Maeda T, Tsumiyama K, Matsumoto T, Kuroda R, Matsubara T. JAK inhibitors inhibit angiogenesis by reducing VEGF production from rheumatoid arthritis-derived fibroblast-like synoviocytes. Clin Rheumatol 2024; 43:3525-3536. [PMID: 39302595 DOI: 10.1007/s10067-024-07142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION/OBJECTIVES JAK/STAT signaling inhibition exerts therapeutic effects on angiogenesis in rheumatoid arthritis (RA). However, whether the inhibitory effect differs among JAK inhibitors because of differing selectivity is unknown. Therefore, we compared the inhibitory effects of tofacitinib, baricitinib, peficitinib, upadacitinib, and filgotinib on angiogenesis. METHOD RA-derived fibroblast-like synoviocytes (RA-FLS) were seeded on type I collagen gel, and human umbilical vein endothelial cells (HUVECs) were directly added. The control and aforementioned JAK inhibitors were added to the medium, followed by stimulation with interleukin (IL)-6 and soluble IL-6 receptor (sIL-6R). Each JAK inhibitor's concentration was determined based on estimated blood concentrations. The vascular endothelial growth factor (VEGF) concentration was evaluated with an enzyme-linked immunosorbent assay using the medium from the first exchange. A migration assay was performed, and HUVEC migration was evaluated using CD31 fluorescence immunostaining. RESULTS Hematoxylin-eosin staining showed that compared with the non-JAKi treatment group, the JAKi treatment group markedly degenerated in the sub-lining and deep lining, with decreased lymphocyte infiltration and neovascularization [Rooney's score subscale, non-JAKi vs JAKi (median, 6.5 vs 2.5, p = 0.005)]. In vitro, IL-6 and sIL-6R administration increased VEGF production from RA-FLS and promoted neovascularization in HUVECs, and JAK-inhibitor administration, which decreased VEGF production from RA-FLS and suppressed HUVEC migration, inhibited neovascularization in RA-FLS and HUVEC co-cultures. CONCLUSIONS The JAK inhibitors suppressed IL-6-induced angiogenesis via decreased VEGF production and HUVEC migration in RA-FLS and HUVEC co-cultures. No significant differences were observed among the JAK inhibitors, whose anti-angiogenic effect may be an important mechanism for RA treatment. Key Points • JAK inhibitors inhibit angiogenesis in RA by reducing VEGF production from RA-derived fibroblast-like synoviocytes. • Our study provides new insights into RA treatment by elucidating the anti-angiogenic effect of JAK inhibitors.
Collapse
Affiliation(s)
- Kensuke Anjiki
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan.
| | - Kenmei Ikuta
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoshihito Suda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyui Kamenaga
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuichi Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Naoki Nkano
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Toshihisa Maeda
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, Japan
| | - Ken Tsumiyama
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Tsukasa Matsubara
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, Japan
| |
Collapse
|
6
|
Chatterjee A, Jayaprakasan M, Chakrabarty AK, Lakkaniga NR, Bhatt BN, Banerjee D, Narwaria A, Katiyar CK, Dubey SK. Comprehensive insights into rheumatoid arthritis: Pathophysiology, current therapies and herbal alternatives for effective disease management. Phytother Res 2024; 38:2764-2799. [PMID: 38522945 DOI: 10.1002/ptr.8187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis is a chronic autoimmune inflammatory disease characterized by immune response overexpression, causing pain and swelling in the synovial joints. This condition is caused by auto-reactive antibodies that attack self-antigens due to their incapacity to distinguish between self and foreign molecules. Dysregulated activity within numerous signalling and immunological pathways supports the disease's development and progression, elevating its complexity. While current treatments provide some alleviation, their effectiveness is accompanied by a variety of adverse effects that are inherent in conventional medications. As a result, there is a deep-rooted necessity to investigate alternate therapeutic strategies capable of neutralizing these disadvantages. Medicinal herbs display a variety of potent bioactive phytochemicals that are effective in the complementary management of disease, thus generating an enormous potency for the researchers to delve deep into the development of novel phytomedicine against autoimmune diseases, although additional evidence and understanding are required in terms of their efficacy and pharmacodynamic mechanisms. This literature-based review highlights the dysregulation of immune tolerance in rheumatoid arthritis, analyses the pathophysiology, elucidates relevant signalling pathways involved, evaluates present and future therapy options and underscores the therapeutic attributes of a diverse array of medicinal herbs in addressing this severe disease.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Monisha Jayaprakasan
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | | | | | | | | |
Collapse
|
7
|
Su W, Ye Z, Wang G, Huang H, Fang Y. Circ_0008410 contributes to fibroblast-like synoviocytes dysfunction by regulating miR-149-5p/HIPK2 axis. Microbiol Immunol 2024; 68:100-110. [PMID: 38129937 DOI: 10.1111/1348-0421.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Circular RNAs (circRNAs) play functional roles in rheumatoid arthritis (RA) progression. Fibroblast-like synoviocytes (RASFs) are the main effectors in RA development. In this study, we explored the function and mechanism of circ_0008410 in RASFs. qRT-PCR was used to detect the expression of circ_0008410, microRNA-149-5p (miR-149-5p), and homeodomain-interacting protein kinase 2 (HIPK2). Cell counting kit-8, EdU assay, flow cytometry, and transwell assay were performed to evaluate cell proliferation, apoptosis, migration, and invasion. Western blot measured the protein levels of related markers and HIPK2. The levels of IL-1β, TNF-α, and IL-6 were tested by corresponding ELISA kits and Western blot. The combination between miR-149-5p and circ_0008410 or HIPK2 was detected by dual-luciferase reporter assay or RNA immunoprecipitation (RIP) assay. Our data showed that circ_0008410 and HIPK2 were elevated, while miR-149-5p was downregulated in RA synovial tissues and RASFs. Circ_0008410 promoted RASF proliferation, migration, invasion, and inflammation while inhibiting apoptosis. MiR-149-5p was a target of circ_0008410, and its overexpression could reverse the promoting effects of circ_0008410 on RASF dysfunction. Moreover, miR-149-5p could target HIPK2 to suppress RASF proliferation, migration, invasion, and inflammation. Collectively, circ_0008410 promoted RASF dysfunction via miR-149-5p/HIPK2, which might provide a potential target for RA therapy.
Collapse
Affiliation(s)
- Wensi Su
- Department of Geriatric Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Zhifang Ye
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Yehan Fang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| |
Collapse
|
8
|
Wei Z, Li H, Lv S, Yang J. Current situation and trend of non-coding RNA in rheumatoid arthritis: a review and bibliometric analysis. Front Immunol 2024; 14:1301545. [PMID: 38292492 PMCID: PMC10824985 DOI: 10.3389/fimmu.2023.1301545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects multiple joints and has adverse effects on various organs throughout the body, often leading to a poor prognosis. Recent studies have shown significant progress in the research of non-coding RNAs (ncRNAs) in RA. Therefore, this study aims to comprehensively assess the current status and research trends of ncRNAs in RA through a bibliometric analysis. Methods This study retrieved articles relevant to ncRNAs and RA from the Science Citation Index Expanded Database of the Web of Science Core Collection between January 1st, 2003, and July 31st, 2023. The relevant articles were screened based on the inclusion criteria. VOSviewer and CiteSpace are utilized for bibliometric and visual analysis. Results A total of 1697 publications were included in this study, and there was a noticeable increase in annual publications from January 1st, 2003, to July 31st, 2023. China, the United States, and the United Kingdom were the most productive countries in this field, contributing to 43.81%, 13.09%, and 3.87% of the publications. Anhui Medical University and Lu Qianjin were identified as the most influential institution and author. Frontiers In Immunology stood out as the most prolific journal, while Arthritis & Rheumatology was the most co-cited journal. Additionally, the research related to "circular RNA", "oxidative stress", "proliferation", and "migration" have emerged as new hotspots in the field. Conclusion In this study, we have summarized the publication characteristics related to ncRNA and RA and identified the most productive countries, institutions, authors, journals, hot topics, and trends.
Collapse
Affiliation(s)
- Zehong Wei
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Huaiyu Li
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Senhao Lv
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Junping Yang
- Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Wang M, Yin J, Han Q, Li B, Zhao XW, Xue L. Arsenic Trioxide Suppresses Angiogenesis in Non-small Cell Lung Cancer via the Nrf2-IL-33 Signaling Pathway. Anticancer Agents Med Chem 2024; 24:1142-1150. [PMID: 38847245 DOI: 10.2174/0118715206288348240420174853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Non-Small Cell Lung Cancer (NSCLC) ranks as a leading cause of cancer-related mortality, necessitating the urgent search for cost-effective and efficient anti-NSCLC drugs. Our preliminary research has demonstrated that arsenic trioxide (ATO) significantly inhibits NSCLC angiogenesis, exerting anti-tumor effects. In conjunction with existing literature reports, the Nrf2-IL-33 pathway is emerging as a novel mechanism in NSCLC angiogenesis. OBJECTIVE This study aimed to elucidate whether ATO can inhibit NSCLC angiogenesis through the Nrf2-IL-33 pathway. METHODS Immunohistochemistry was employed to assess the expression of Nrf2, IL-33, and CD31 in tumor tissues from patients with NSCLC. DETA-NONOate was used as a nitric oxide (NO) donor to mimic high levels of NO in the tumor microenvironment. Western blot, quantitative real-time PCR, and enzyme-linked immunosorbent assay were utilized to evaluate the expression of Nrf2 and IL-33 in the NCI-H1299 cell line. Subcutaneous xenograft models were established in nude mice by implanting NCI-H1299 cells to assess the anti-tumor efficacy of ATO. RESULTS High expression levels of Nrf2 and IL-33 were observed in tumor samples from patients with NSCLC, and Nrf2 expression positively correlated with microvascular density in NSCLC. In vitro, NO (released from 1mM DETA-NONOate) promoted activation of the Nrf2-IL-33 signaling pathway in NCI-H1299 cells, which was reversed by ATO. Additionally, both Nrf2 deficiency and ATO treatment significantly attenuated NOinduced IL-33 expression. In vivo, both ATO and the Nrf2 inhibitor ML385 demonstrated significant inhibitory effects on angiogenesis tumor growth. CONCLUSION Nrf2-IL-33 signaling is usually activated in NSCLC and positively correlates with tumor angiogenesis. ATO effectively disrupts the activation of the Nrf2-IL-33 pathway in NSCLC and thus inhibits angiogenesis, suggesting its potential as an anti-angiogenic agent for use in the treatment of NSCLC.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Angiogenesis
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Arsenic Trioxide/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Interleukin-33/metabolism
- Interleukin-33/antagonists & inhibitors
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/antagonists & inhibitors
- Signal Transduction/drug effects
- Structure-Activity Relationship
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Mingdong Wang
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai, 200434, China
| | - Jizhong Yin
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Qianyu Han
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai, 200434, China
| | - Xue-Wei Zhao
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai, 200434, China
| | - Lei Xue
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| |
Collapse
|
10
|
Wen J, Liu J, Wan L, Wang F. Long noncoding RNA/circular RNA regulates competitive endogenous RNA networks in rheumatoid arthritis: molecular mechanisms and traditional Chinese medicine therapeutic significances. Ann Med 2023; 55:973-989. [PMID: 36905646 PMCID: PMC10795602 DOI: 10.1080/07853890.2023.2172605] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/20/2023] [Indexed: 03/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic and autoimmune disease that is mainly featured abnormal fibroblast-like synoviocyte (FLS) proliferation and inflammatory cell infiltration. Abnormal expression or function of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are closely related to human diseases, including RA. There has been increasing evidence showing that in the competitive endogenous RNA (ceRNA) networks, both lncRNA and circRNA are vital in the biological functions of cells. Nevertheless, the exact mechanism of ceRNA in RA remains to be investigated. Herein, we summarized the molecular potencies of lncRNA/circRNA-mediated ceRNA networks in RA, with emphasis on the phenotypic regulation of ceRNA in the progression of RA, including regulation of proliferation, invasion, inflammation and apoptosis, as well as the role of ceRNA in traditional Chinese medicine (TCM) in the treatment of RA. In addition, we also discussed the future direction and potential clinical value of ceRNA in the treatment of RA, which may provide potential reference value for clinical trials of TCM therapy for the treatment of RA.Key messagesLong noncoding RNA/circular RNA can work as the competitive endogenous RNA sponge and participate in the pathogenesis of rheumatoid arthritis.Traditional Chinese medicine and its agents have shown potential roles in the prevention and treatment of rheumatoid arthritis via competitive endogenous RNA.
Collapse
Affiliation(s)
- Jianting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Xin’an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Fanfan Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
11
|
Wan L, Liu J, Huang C, Zhu Z, Li F, Sun G, Wang K, Li S, Ma X, Chen X, Yuan W. Role of m6A modification and novel circ_0066715/ miR-486-5p/ ETS1 axis in rheumatoid arthritis macrophage polarization progression. Aging (Albany NY) 2022; 14:10009-10026. [PMID: 36541909 PMCID: PMC9831719 DOI: 10.18632/aging.204439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic disease dominated by inflammatory synovitis. RA synovial macrophages tend undergo M1-type macrophage polarization. Then, polarized M1-type macrophages secrete abundant pro-inflammatory cytokines, causing joint and cartilage destruction. N6-methyladenosine (m6A) methylation modification, circular RNA (circRNA), microRNA (miRNA), messenger RNA (mRNA), etc. are involved in the inflammatory response of RA. We found that there is an imbalance of inflammatory polarization in RA, which is manifested by a sharp increase in inflammatory markers and a high inflammatory response. Here, we show that RA was closely associated with low expression of circ_0066715. The overexpression of circ_0066715 significantly increased the ETS1 levels in RA-FLS cells, decreased cytokine secretion by M1-type macrophages, elevated M2-type cytokines, and inhibited FLS proliferation. Interestingly, the overexpression of miR-486-5p significantly suppressed the attenuation of the cell function and the effect on M1 macrophage polarization caused by circ_0066715 positive expression. WTAP may be involved in the methylation process of ETS1 in RA. ETS1 m6A methylation levels were altered upon WTAP intervention. The overexpression or interference of circ_0066715 decreased or increased WTAP expression. Our findings provide a novel circRNA/miRNA/mRNA regulatory axis and m6A regulatory mechanism involved in the process of RA macrophage polarization, thereby providing a powerful diagnostic and therapeutic strategy for RA treatment.
Collapse
Affiliation(s)
- Lei Wan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China,Key Laboratory of Xin’an Medical Education Ministry, Hefei 230038, China
| | - Jian Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China,Key Laboratory of Xin’an Medical Education Ministry, Hefei 230038, China
| | - Chuanbing Huang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ziheng Zhu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Fangze Li
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Guanghan Sun
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Kun Wang
- Key Laboratory of Xin’an Medical Education Ministry, Hefei 230038, China,College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shu Li
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ximeng Ma
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Xi Chen
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Wang Yuan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| |
Collapse
|
12
|
Ren L, Jiang Q, Mo L, Tan L, Dong Q, Meng L, Yang N, Li G. Mechanisms of circular RNA degradation. Commun Biol 2022; 5:1355. [PMID: 36494488 PMCID: PMC9734648 DOI: 10.1038/s42003-022-04262-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (CircRNAs) are a class of noncoding RNAs formed by backsplicing during cotranscriptional and posttranscriptional processes, and they widely exist in various organisms. CircRNAs have multiple biological functions and are associated with the occurrence and development of many diseases. While the biogenesis and biological function of circRNAs have been extensively studied, there are few studies on circRNA degradation and only a few pathways for specific circRNA degradation have been identified. Here we outline basic information about circRNAs, summarize the research on the circRNA degradation mechanisms and discusses where this field might head, hoping to provide some inspiration and guidance for scholars who aim to study the degradation of circRNAs.
Collapse
Affiliation(s)
- Longxin Ren
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Qingshan Jiang
- grid.412017.10000 0001 0266 8918Department of Otolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001 China
| | - Liyi Mo
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Lijie Tan
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Qifei Dong
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Lijuan Meng
- grid.412017.10000 0001 0266 8918Department of Ultrasonography, Second Affiliated Hospital, University of South China, Hengyang Hunan, 421001 China
| | - Nanyang Yang
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Guoqing Li
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| |
Collapse
|
13
|
Lin Z, Ma Y, Zhu X, Dai S, Sun W, Li W, Niu S, Chu M, Zhang J. Potential predictive and therapeutic applications of small extracellular vesicles-derived circPARD3B in osteoarthritis. Front Pharmacol 2022; 13:968776. [PMID: 36339585 PMCID: PMC9627215 DOI: 10.3389/fphar.2022.968776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 01/22/2025] Open
Abstract
Background: Heterogeneous phenotypes that display distinct common characteristics of osteoarthritis (OA) are not well defined and will be helpful in identifying more customized therapeutic options for OA. Circular RNAs (circRNAs) have attracted more and more attention due to their role in the progression of OA. Investigating the role of circRNAs in the pathogenesis of OA will contribute to the phenotyping of OA and to individualized treatment. Methods: Small extracellular vesicles (sEV) were isolated from serum samples from patients with OA of different stages and sEV-derived circPARD3B was determined using RT-qPCR analysis. CircPARD3B expression in a stimulated coculture that included OA fibroblast-like synoviocytes (OA-FLS) as well as human dermal microvascular endothelial cells (HDMECs), plus the effects of circPARD3B on the expression of vascular endothelial growth factor (VEGF) long with angiogenic activity, were evaluated in vitro. Based on bioinformatics analysis and luciferase reporter assay (LRA), MiR-326 and sirtuin 1 (SIRT1) were found to be interactive partners of circPARD3B. Mesenchymal stem cells (SMSCs) overexpressing circPARD3B were constructed and SMSCs-derived sEV with overexpressed circPARD3B (OE-circPARD3B-SMSCs-sEV) were obtained to explore the effect of the intervention of circPARD3B combined with SMSCs-sEV-based therapy in vitro and in a OA model induced by collagenase in vivo. Results: Serum sEV-linked circPARD3B was indentified to be significantly decreased in the inflammatory phenotype of OA. Overexpression of circPARD3B was found to inhibit the expression of VEGF, as well as the angiogenesis induced by VEGF in a IL-1β stimulated the co-culture of OA-FLS as well as HDMECs. CircPARD3B is directly bound to miR-326. SIRT1 was considered a novel miR-326 target gene. OE-circPARD3B-SMSCs-sEV significantly reduced VEGF expression in coculture of OA-FLS and HDMECs. Injection of OE-circPARD3B-SMSCs-sEV could also reduce synovial VEGF; additionally, it could further ameliorate OA in the mouse model of OA in vivo. Conclusion: Serum sEV circPARD3B is a potential biomarker that enables the identification of the inflammatory phenotype of patients with OA. Correspondingly, intracellular transfer of circPARD3B through OE-circPARD3B-SMSCs-sEV could postpone disease progression through a functional module regulated angiogenesis of circPARD3B-miR-326-SIRT1, providing a novel therapeutic strategy for OA.
Collapse
Affiliation(s)
- Zhiguo Lin
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yeye Ma
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaoying Zhu
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Siming Dai
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wentian Sun
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wenjing Li
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Sijia Niu
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Maolin Chu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Juan Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|