1
|
Massey S, Quigley A, Rochfort S, Christodoulou J, Van Bergen NJ. Cannabinoids and Genetic Epilepsy Models: A Review with Focus on CDKL5 Deficiency Disorder. Int J Mol Sci 2024; 25:10768. [PMID: 39409097 PMCID: PMC11476665 DOI: 10.3390/ijms251910768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Pediatric genetic epilepsies, such as CDKL5 Deficiency Disorder (CDD), are severely debilitating, with early-onset seizures occurring more than ten times daily in extreme cases. Existing antiseizure drugs frequently prove ineffective, which significantly impacts child development and diminishes the quality of life for patients and caregivers. The relaxation of cannabis legislation has increased research into potential therapeutic properties of phytocannabinoids such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). CBD's antiseizure properties have shown promise, particularly in treating drug-resistant genetic epilepsies associated with Lennox-Gastaut syndrome (LGS), Dravet syndrome (DS), and Tuberous Sclerosis Complex (TSC). However, specific research on CDD remains limited. Much of the current evidence relies on anecdotal reports of artisanal products lacking accurate data on cannabinoid composition. Utilizing model systems like patient-derived iPSC neurons and brain organoids allows precise dosing and comprehensive exploration of cannabinoids' pharmacodynamics. This review explores the potential of CBD, THC, and other trace cannabinoids in treating CDD and focusing on clinical trials and preclinical models to elucidate the cannabinoid's potential mechanisms of action in disrupted CDD pathways and strengthen the case for further research into their potential as anti-epileptic drugs for CDD. This review offers an updated perspective on cannabinoid's therapeutic potential for CDD.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.M.); (J.C.)
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia;
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC 3065, Australia
- Centre for Clinical Neuroscience and Neurological Research, St. Vincent’s Hospital, Melbourne, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Simone Rochfort
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia;
- Agriculture Victoria Research, AgriBio Centre, AgriBio, Melbourne, VIC 3083, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.M.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.M.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
2
|
Wang Y, Qiu XY, Liu JY, Tan B, Wang F, Sun MJ, Jiang XH, Ji XM, Xu CL, Wang Y, Chen Z. (+)-Borneol enantiomer ameliorates epileptic seizure via decreasing the excitability of glutamatergic transmission. Acta Pharmacol Sin 2023; 44:1600-1611. [PMID: 36973542 PMCID: PMC10374614 DOI: 10.1038/s41401-023-01075-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Epilepsy is one common brain disorder, which is not well controlled by current pharmacotherapy. In this study we characterized the therapeutic potential of borneol, a plant-derived bicyclic monoterpene compound, in the treatment of epilepsy and elucidated the underlying mechanisms. The anti-seizure potency and properties of borneol were assessed in both acute and chronic mouse epilepsy models. Administration of (+)-borneol (10, 30, 100 mg/kg, i.p.) dose-dependently attenuated acute epileptic seizure in maximal-electroshock seizure (MES) and pentylenetetrazol (PTZ)-induced seizure models without obvious side-effect on motor function. Meanwhile, (+)-borneol administration retarded kindling-induced epileptogenesis and relieved fully kindled seizures. Importantly, (+)-borneol administration also showed therapeutic potential in kainic acid-induced chronic spontaneous seizure model, which was considered as a drug-resistant model. We compared the anti-seizure efficacy of 3 borneol enantiomers in the acute seizure models, and found (+)-borneol being the most satisfying one with long-term anti-seizure effect. In electrophysiological study conducted in mouse brain slices containing the subiculum region, we revealed that borneol enantiomers displayed different anti-seizure mechanisms, (+)-borneol (10 μM) markedly suppressed the high frequency burst firing of subicular neurons and decreased glutamatergic synaptic transmission. In vivo calcium fiber photometry analysis further verified that administration of (+)-borneol (100 mg/kg) inhibited the enhanced glutamatergic synaptic transmission in epilepsy mice. We conclude that (+)-borneol displays broad-spectrum anti-seizure potential in different experimental models via decreasing the glutamatergic synaptic transmission without obvious side-effect, suggesting (+)-borneol as a promising anti-seizure compound for pharmacotherapy in epilepsy.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jia-Ying Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Min-Juan Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xu-Hong Jiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xu-Ming Ji
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ceng-Lin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
3
|
Jiang J, Yu Y. Pharmacologically targeting transient receptor potential channels for seizures and epilepsy: Emerging preclinical evidence of druggability. Pharmacol Ther 2023; 244:108384. [PMID: 36933703 PMCID: PMC10124570 DOI: 10.1016/j.pharmthera.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
As one of the most prevalent and disabling brain disorders, epilepsy is characterized by spontaneous seizures that result from aberrant, excessive hyperactivity of a group of highly synchronized brain neurons. Remarkable progress in epilepsy research and treatment over the first two decades of this century led to a dramatical expansion in the third-generation antiseizure drugs (ASDs). However, there are still over 30% of patients suffering from seizures resistant to the current medications, and the broad unbearable adversative effects of ASDs significantly impair the quality of life in about 40% of individuals affected by the disease. Prevention of epilepsy in those who are at high risks is another major unmet medical need, given that up to 40% of epilepsy patients are believed to have acquired causes. Therefore, it is important to identify novel drug targets that can facilitate the discovery and development of new therapies engaging unprecedented mechanisms of action that might overcome these significant limitations. Also over the last two decades, calcium signaling has been increasingly recognized as a key contributory factor in epileptogenesis of many aspects. The intracellular calcium homeostasis involves a variety of calcium-permeable cation channels, the most important of which perhaps are the transient receptor potential (TRP) ion channels. This review focuses on recent exciting advances in understanding of TRP channels in preclinical models of seizure disorders. We also provide emerging insights into the molecular and cellular mechanisms of TRP channels-engaged epileptogenesis that might lead to new antiseizure therapies, epilepsy prevention and modification, and even a cure.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
4
|
Moriyama H, Nomura S, Imoto H, Oka F, Maruta Y, Mori N, Fujii N, Suzuki M, Ishihara H. Suppressive effects of a transient receptor potential melastatin 8 (TRPM8) agonist on hyperthermia-induced febrile seizures in infant mice. Front Pharmacol 2023; 14:1138673. [PMID: 36969879 PMCID: PMC10033885 DOI: 10.3389/fphar.2023.1138673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Febrile seizures (FSs) are the most frequent type of seizures in infancy and childhood. Epileptiform discharges (EDs) on electroencephalogram at the time of first FS recurrence can increase the risk of epilepsy development. Therefore, inhibition of EDs is important. Recently, WS-3, a transient receptor potential melastatin 8 (TRPM8) agonist, reportedly suppressed penicillin G-induced cortical-focal EDs. However, the effects of TRPM8 agonists on FSs remain unknown. In this study, we aimed to clarify the effects of the TRPM8 agonist, and the absence of TRPM8 channels, on hyperthermia-induced FS by analyzing the fast ripple band. Methods: Hyperthermia (43°C for 30 min) induced by a heating pad caused FSs in postnatal day 7 wild-type (WT) and TRPM8 knockout (TRPM8KO) mice. FSs were defined as EDs occurring during behavioral seizures involving hindlimb clonus and loss of the righting reflex. Mice were injected with 1% dimethyl sulfoxide or 1 mM WS-3 20 min before the onset of hyperthermia, and electroencephalograms; movies; and rectal, brain and heating pad temperatures were recorded. Results: In wild-type mice, WS-3 reduced the fast ripple amplitude in the first FS without changing rectal and brain temperature thresholds. In contrast, the anti-FS effect induced by the TRPM8 agonist was not observed in TRPM8KO mice and, compared with wild-type mice, TRPM8 deficiency lowered the rectal and brain temperature thresholds for FSs, exacerbated the fast ripple amplitude, and prolonged the duration of the initial FS induced by hyperthermia. Conclusion: Our findings suggest that TRPM8 agonists can be used to treat hyperthermia-induced FSs.
Collapse
Affiliation(s)
- Hiroshi Moriyama
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Sadahiro Nomura
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
- Epilepsy Center, Yamaguchi University Hospital, Ube, Yamaguchi, Japan
| | - Hirochika Imoto
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
- Epilepsy Center, Yamaguchi University Hospital, Ube, Yamaguchi, Japan
| | - Fumiaki Oka
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Yuichi Maruta
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Naomasa Mori
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Natsumi Fujii
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Michiyasu Suzuki
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Hideyuki Ishihara
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| |
Collapse
|
5
|
Fujimoto A, Matsumaru Y, Masuda Y, Marushima A, Hosoo H, Araki K, Ishikawa E. Endovascular Electroencephalogram Records Simultaneous Subdural Electrode-Detectable, Scalp Electrode-Undetectable Interictal Epileptiform Discharges. Brain Sci 2022; 12:309. [PMID: 35326265 PMCID: PMC8946704 DOI: 10.3390/brainsci12030309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION We hypothesized that an endovascular electroencephalogram (eEEG) can detect subdural electrode (SDE)-detectable, scalp EEG-undetectable epileptiform discharges. The purpose of this study is, therefore, to measure SDE-detectable, scalp EEG-undetectable epileptiform discharges by an eEEG on a pig. METHODS A pig under general anesthesia was utilized to measure an artificially generated epileptic field by an eEEG that was able to be detected by an SDE, but not a scalp EEG as a primary outcome. We also compared the phase lag of each epileptiform discharge that was detected by the eEEG and SDE as a secondary outcome. RESULTS The eEEG electrode detected 113 (97%) epileptiform discharges (97% sensitivity). Epileptiform discharges that were localized within the three contacts (contacts two, three and four), but not spread to other parts, were detected by the eEEG with a 92% sensitivity. The latency between peaks of the eEEG and right SDE earliest epileptiform discharge ranged from 0 to 48 ms (mean, 13.3 ms; median, 11 ms; standard deviation, 9.0 ms). CONCLUSION In a pig, an eEEG could detect epileptiform discharges that an SDE could detect, but that a scalp EEG could not.
Collapse
Affiliation(s)
- Ayataka Fujimoto
- Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Shizuoka 988-056, Japan;
- School of Rehabilitation Sciences, Seirei Christopher University, Shizuoka 988-056, Japan
| | - Yuji Matsumaru
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8575, Japan; (Y.M.); (A.M.); (H.H.); (K.A.); (E.I.)
- E.P. Medical Inc., 403 Nihonbashi-Life-Science Building, 2-3-11, Honcho, Nihonbashi, Chuo-ku, Tokyo 103-0023, Japan
| | - Yosuke Masuda
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8575, Japan; (Y.M.); (A.M.); (H.H.); (K.A.); (E.I.)
| | - Aiki Marushima
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8575, Japan; (Y.M.); (A.M.); (H.H.); (K.A.); (E.I.)
| | - Hisayuki Hosoo
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8575, Japan; (Y.M.); (A.M.); (H.H.); (K.A.); (E.I.)
| | - Kota Araki
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8575, Japan; (Y.M.); (A.M.); (H.H.); (K.A.); (E.I.)
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8575, Japan; (Y.M.); (A.M.); (H.H.); (K.A.); (E.I.)
| |
Collapse
|