1
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
2
|
Senji Laxme RR, Khochare S, Bhatia S, Martin G, Sunagar K. From birth to bite: the evolutionary ecology of India's medically most important snake venoms. BMC Biol 2024; 22:161. [PMID: 39075553 PMCID: PMC11287890 DOI: 10.1186/s12915-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Snake venoms can exhibit remarkable inter- and intraspecific variation. While diverse ecological and environmental factors are theorised to explain this variation, only a handful of studies have attempted to unravel their precise roles. This knowledge gap not only impedes our understanding of venom evolution but may also have dire consequences on snakebite treatment. To address this shortcoming, we investigated the evolutionary ecology of venoms of Russell's viper (Daboia russelii) and spectacled cobra (Naja naja), India's two clinically most important snakes responsible for an alarming number of human deaths and disabilities. METHODOLOGY Several individuals (n = 226) of D. russelii and N. naja belonging to multiple clutches (n = 9) and their mothers were maintained in captivity to source ontogenetic stage-specific venoms. Using various in vitro and in vivo assays, we assessed the significance of prey, ontogeny and sex in driving venom composition, function, and potency. RESULTS Considerable ontogenetic shifts in venom profiles were observed in D. russelii, with the venoms of newborns being many times as potent as juveniles and adults against mammalian (2.3-2.5 ×) and reptilian (2-10 ×) prey. This is the first documentation of the ontogenetic shift in viperine snakes. In stark contrast, N. naja, which shares a biogeographic distribution similar to D. russelii, deployed identical biochemical cocktails across development. Furthermore, the binding kinetics of cobra venom toxins against synthetic target receptors from various prey and predators shed light on the evolutionary arms race. CONCLUSIONS Our findings, therefore, provide fascinating insights into the roles of ecology and life history traits in shaping snake venoms.
Collapse
Affiliation(s)
- R R Senji Laxme
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Siddharth Bhatia
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Gerard Martin
- The Liana Trust. Survey, #1418/1419 Rathnapuri, Hunsur, 571189, Karnataka, India
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
3
|
Thakur S, Giri S, Lalremsanga HT, Doley R. Indian green pit vipers: A lesser-known snake group of north-east India. Toxicon 2024; 242:107689. [PMID: 38531479 DOI: 10.1016/j.toxicon.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Green pit vipers are one of the most widely distributed group of venomous snakes in south-east Asia. In Indian, green pit vipers are found in the Northern and North-eastern states spreading across eastern and central India and one of the lesser studied venoms. High morphological similarity among them has been a long-established challenge for species identification, however, a total of six species of Indian green pit viper belonging to genus Trimeresurus, Popeia and Viridovipera has been reported from North-east India. Biochemical and biological studies have revealed that venom exhibits substantial variation in protein expression level along with functional variability. The symptoms of envenomation are painful swelling at bite site, bleeding, necrosis along with systemic toxicity such as prolonged coagulopathy. Clinical data of green pit viper envenomated patients from Demow community health centre, Assam advocated against the use of Indian polyvalent antivenom pressing the need for a suitable antivenom for the treatment of green pit viper envenomation. To design effective and specific antivenom for green pit vipers, unveiling the proteome profile of these snakes is needed. In this study, a comparative venomic of green pit vipers of Northern and North-eastern India, their clinical manifestation as well as treatment protocol has been reviewed.
Collapse
Affiliation(s)
- Susmita Thakur
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, India
| | - Surajit Giri
- Demow Government Community Health Centre, Raichai, Konwar Dihingia Gaon, Sivasagar, Assam, India
| | - H T Lalremsanga
- Department of Zoology, Mizoram University, Aizawl 796004, Mizoram, India
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, India.
| |
Collapse
|
4
|
Lim ASS, Tan KY, Tan CH. Immunoreactivity and neutralization efficacy of Pakistani Viper Antivenom (PVAV) against venoms of Saw-scaled Vipers (Echis carinatus subspp.) and Western Russell's Vipers (Daboia russelii) from the Indian subcontinent. Acta Trop 2024; 250:107099. [PMID: 38097152 DOI: 10.1016/j.actatropica.2023.107099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/31/2023]
Abstract
Snakebite envenoming (SBE) is a priority Neglected Tropical Disease listed by the World Health Organization. South Asia is heavily affected, and virtually all countries in the region import polyvalent antivenom products from India for clinical use. The imported antivenoms, however, have suboptimal effectiveness due to geographical venom variation. Recently, a domestic bivalent product, named Pakistani Viper Antivenom (PVAV) has been developed specifically for Pakistani vipers, Echis carinatus sochureki and Daboia russelii. As a bivalent viperid antivenom, it is unknown yet if PVAV exhibits higher immunological binding and neutralization activities against viper venoms from distant locales compared with polyvalent antivenoms manufactured in India. This study thus examined the preclinical efficacy of PVAV against venoms of Western Russell's Vipers and Saw-scaled Viper subspecies from selected locales in the Indian subcontinent. PVAV generally outperformed the commonly used VINS polyvalent antivenom (VPAV, manufactured in India) in binding toward venoms, and showed superior or comparable neutralization efficacy against the venom procoagulant and hemorrhagic effects of Saw-scaled Vipers as well as Russell's Vipers from Pakistan and Sri Lanka. Based on normalized potency values, PVAV is far more potent than VPAV in neutralizing the lethality of all viper venoms, except that of the Indian Russell's Viper. The study shows conserved antigenicity of toxins responsible for major toxicity across these viperid venoms, and suggests the feasible production of a viper-specific antivenom with higher potency and broader geographical utility for the region.
Collapse
Affiliation(s)
- Andy Shing Seng Lim
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
5
|
Jaglan A, Bhatia S, Martin G, Sunagar K. The Royal Armoury: Venomics and antivenomics of king cobra (Ophiophagus hannah) from the Indian Western Ghats. Int J Biol Macromol 2023; 253:126708. [PMID: 37673142 DOI: 10.1016/j.ijbiomac.2023.126708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/12/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Despite being famous as 'the king' of the snake world, the king cobra (Ophiophagus hannah) has remained a mysterious species, particularly with respect to its venom ecology. In contrast, venom research has largely focussed on the 'big four' snakes that are greatly responsible for the burden of snakebite in the Indian subcontinent. This study aims to bridge the current void in our understanding of the O. hannah venom by investigating its proteomic, biochemical, pharmacological, and toxinological profiles via interdisciplinary approaches. Considering their physical resemblance, the king cobra is often compared to the spectacled cobra (Naja naja). Comparative venomics of O. hannah and N. naja in this study provided interesting insights into their venom compositions, activities, and potencies. Our findings suggest that the O. hannah venom, despite being relatively less complex than the N. naja venom, is equally potent. Finally, our in vitro and in vivo assays revealed that both Indian polyvalent and Thai Red Cross monovalent antivenoms completely fail to neutralise the O. hannah venom. Our findings provide guidelines for the management of bites from this clinically important yet neglected snake species in India.
Collapse
Affiliation(s)
- Anurag Jaglan
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Siddharth Bhatia
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Gerard Martin
- The Liana Trust, Survey #1418/1419 Rathnapuri, Hunsur 571189, Karnataka, India
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India.
| |
Collapse
|
6
|
Soopairin S, Patikorn C, Taychakhoonavudh S. Antivenom preclinical efficacy testing against Asian snakes and their availability in Asia: A systematic review. PLoS One 2023; 18:e0288723. [PMID: 37467278 DOI: 10.1371/journal.pone.0288723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Cross-neutralizing strategy has been applied to improve access to antivenoms, a key to reducing mortality and disability of snakebite envenoming. However, preclinical studies have been conducted to identify antivenoms' cross-neutralizing ability when clinical studies may not be considered ethical. Therefore, this study aimed to identify and summarize scattered evidence regarding the preclinical efficacy of antivenoms against Asian snakes. METHODOLOGY/PRINCIPLE FINDINGS In this systematic review, we searched for articles published until May 30, 2022, in PubMed, Scopus, Web of Science, and Embase. Preclinical studies that reported the available antivenoms' neutralizing ability against Asian snake lethality were included. Quality assessment was performed using the Systematic Review Centre for Laboratory animal Experimentation's risk of bias tool and the adapted the Animal Research Reporting In Vivo Experiments guidelines. The availability of effective antivenoms against Asian snakes was analyzed by comparing data from included studies with snakebite-information and data platforms developed by the World Health Organization. Fifty-two studies were included. Most studies assessed the antivenom efficacy against snakes from Southeast Asia (58%), followed by South Asia (35%) and East Asia (19%). Twenty-two (49%) medically important snakes had antivenom(s) with confirmed neutralizing ability. Situation analyses of the availability of effective antivenoms in Asia demonstrated that locally produced antivenoms did not cover all medically important snakes in each country. Among countries without local antivenom production, preclinical studies were conducted only in Bangladesh, Sri Lanka, and Malaysia. Risk of bias assessment was limited in some domains because of unreported data. CONCLUSIONS/SIGNIFICANCE Cross-neutralizing of antivenoms against some medically important snakes in Asia was confirmed. This strategy may improve access to geographically effective antivenoms and bypass investment in novel antivenom development, especially in countries without local antivenom production. A database should be developed to aid the development of a snakebite-information system.
Collapse
Affiliation(s)
- Sutinee Soopairin
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chanthawat Patikorn
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthira Taychakhoonavudh
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Description of a New Cobra ( Naja Laurenti, 1768; Squamata, Elapidae) from China with Designation of a Neotype for Naja atra. Animals (Basel) 2022; 12:ani12243481. [PMID: 36552401 PMCID: PMC9774835 DOI: 10.3390/ani12243481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Taxonomic frameworks for medically important species such as cobras (genus Naja Laurenti, 1768; Squamata, Elapidae) are essential for the medical treatment of snake bites and accurate antivenin development. In this paper, we described the former N. kaouthia populations recorded from China as a new species and designated a neotype for N. atra-based morphological and mitochondrial phylogenetic analysis. The new species N. fuxisp. nov. was morphologically diagnosed from N. kaouthia by (1) regular single narrow crossband present on the middle and posterior parts of the dorsum (3-15, 7.9 ± 2.7, n = 32) and the dorsal surface of the tail (1-6, 4.2 ± 1.1, n = 32) of both adults and juveniles, buff-colored with dark fringes on both edges, vs. South Asian populations (n = 39) and Southeast Asian populations (n = 35) without cross bands, with irregular cross bands or multiple light-colored crossbands pairs, or densely woven lines; (2) small scales between the posterior chin shields, usually three (40%) or two (37%), rarely four (13%), or one (10%) (n = 30) vs. mostly one (81%) and rarely two (19%) (n = 28); (3) ventrals 179-205 (195.4 ± 6.7, n = 33) vs. South Asian populations 179-199 (188.7 ± 5.9, n = 12); Southeast Asian populations 168-186 (177.8 ± 4.9, n = 18). Phylogenetically, the new species forms an independent sister clade to the clade including N. atra, N. kaouthia, N. oxiana and N. sagittifera. Furthermore, the subspecies N. naja polyocellata should be resurrected and recognized as a full species, N. polyocellatacomb. nov., and the subspecies N. sumatrana miolepis should be resurrected.
Collapse
|
8
|
Tan CH, Tan KY, Jackson TNW. Editorial: Venoms and Toxins: Functional Omics and Pharmacological Insights. Front Pharmacol 2022; 13:887513. [PMID: 35571136 PMCID: PMC9093603 DOI: 10.3389/fphar.2022.887513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Attarde S, Iyer A, Khochare S, Shaligram U, Vikharankar M, Sunagar K. The Preclinical Evaluation of a Second-Generation Antivenom for Treating Snake Envenoming in India. Toxins (Basel) 2022; 14:toxins14030168. [PMID: 35324665 PMCID: PMC8950585 DOI: 10.3390/toxins14030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Abstract
Snake envenoming afflicts the Indian subcontinent with the highest rates of mortality (47,000) and morbidity globally. The only effective treatment for snakebites is the administration of antivenom, which is produced by the hyperimmunisation of equines. Commercial Indian antivenoms, however, have been shown to exhibit a poor preclinical performance in neutralising venom, as a result of inter- and intrapopulation snake venom variation. Additionally, their poor dose effectiveness necessitates the administration of larger volumes of antivenom for treatment, leading to several harmful side effects in snakebite victims, including serum sickness and fatal anaphylaxis. In this study, we employed chromatographic purification to enhance the dose efficacy of commercial Indian antivenoms. The efficacy of this ‘second-generation’ antivenom was comparatively evaluated against six other marketed antivenoms using a number of in vitro and in vivo preclinical assays, which revealed its superior venom recognition capability. Enhanced purity also resulted in significant improvements in dose effectiveness, as the ‘second-generation’ antivenom exhibited a 3 to 4.5 times increased venom neutralisation potential. Furthermore, preclinical assays revealed the increased effectiveness of the ‘second-generation’ antivenom in countering morbid effects inflicted by the ‘big four’ Indian snakes. Thus, we demonstrate the role of simpler purification steps in significantly enhancing the effectiveness of snakebite therapy in regions that are most affected by snakebites.
Collapse
Affiliation(s)
- Saurabh Attarde
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India; (S.A.); (A.I.); (S.K.)
| | - Ashwin Iyer
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India; (S.A.); (A.I.); (S.K.)
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India; (S.A.); (A.I.); (S.K.)
| | - Umesh Shaligram
- Serum Institute of India Pvt. Ltd., 212/2, Hadapsar, Off Soli Poonawalla Road, Pune 411028, Maharashtra, India; (U.S.); (M.V.)
| | - Mayur Vikharankar
- Serum Institute of India Pvt. Ltd., 212/2, Hadapsar, Off Soli Poonawalla Road, Pune 411028, Maharashtra, India; (U.S.); (M.V.)
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India; (S.A.); (A.I.); (S.K.)
- Correspondence:
| |
Collapse
|