1
|
Fatima H, Shahid M, Fatima S, Mills PJ, Pruitt C, Pung MA, Riaz M, Ashraf R, Akter QS. Chemical Fingerprinting, Anti-Inflammatory, and Antioxidant Potential of Hydroethanolic Extract of Aesculus indica. Food Sci Nutr 2025; 13:e4721. [PMID: 39906724 PMCID: PMC11790609 DOI: 10.1002/fsn3.4721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 02/06/2025] Open
Abstract
Aesculus indica is a remarkable species from Sapindaceae family, traditionally used for the treatment of various ailments due to the presence of a variety of bioactive compounds. The present study was planned to evaluate the chemical characterization, anti-inflammatory and antioxidant potential of hydroethanolic extract of A. indica using in vitro and in vivo approaches. A. indica fruit was extracted with a hydroethanolic (70% v/v) solution, filtered, concentrated on a rotary evaporator and crude extract was obtained. In vitro anti-inflammatory potential of A. indica was carried out against peripheral blood mononuclear cells (PBMCs) and a whole blood assay (WBA). Effects of A. indica extracts on proinflammatory cytokines (TNF-α, IFN-gamma, IL-6, IL-1β) and inflammatory mediators (NF-κB, NO and PGE2) concentration in the supernatant of PBMCs and WBA were evaluated using commercial ELISA kits. In vivo anti-inflammatory potential of A. indica hydroethanolic extract was evaluated with carrageenan-induced paw edema in rats. A total of 36 different compounds (mostly phenolics) were detected in A. indica extract with high performance liquid chromatography (HPLC) and UHPCL-QTOF-MS/MS. The extract showed very low cytotoxicity with an IC50 value of 483.68 μg/mL and significantly reduced the levels of proinflammatory cytokines and inflammatory mediators in both PBMCs and WBA models. Furthermore, the extract also effectively inhibited the paw edema by carrageenan in the 2nd hour at 400 mg/kg (73%). Histopathological analysis of rat paw tissue showed significant reduction of cellular infiltration and decrease in swelling of epidermis and dermis by A. indica extracts. The level of enzymatic antioxidants such as superoxide dismutase (SOD) and Catalase (CAT), lipid peroxidation like malondialdehyde (MDA), oxidative stress parameters including total antioxidant status (TAS) and total oxidant status (TOS) and myeloperoxidase (MPO) activity in rat paw tissues were significantly altered after treatment. The combined findings provide evidence that hydroethanolic extract of A. indica is a potential source of bioactive compounds with significant anti-inflammatory and antioxidant activities.
Collapse
Affiliation(s)
- Hina Fatima
- State Key Laboratory of Food Science and ResourcesNanchang UniversityNanchangChina
- Department of BiochemistryUniversity of AgricultureFaisalabadPakistan
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Muhammad Shahid
- Department of BiochemistryUniversity of AgricultureFaisalabadPakistan
| | - Sana Fatima
- Department of ChemistryUniversity of AgricultureFaisalabadPakistan
| | - Paul J. Mills
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Chris Pruitt
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Meredith A. Pung
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Muhammad Riaz
- Department of Allied Health SciencesUniversity of SargodhaSargodhaPakistan
| | - Rizwan Ashraf
- Department of ChemistryUniversity of AgricultureFaisalabadPakistan
| | - Quzi Sharmin Akter
- Department of Genetics and Animal BreedingFaculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology UniversityPatuakhaliBangladesh
| |
Collapse
|
2
|
Yan X, Ma Y, Yan L, Li S, Xu Y. Neuropeptides as Potential Biomarkers in Vascular Dementia. J Integr Neurosci 2024; 23:66. [PMID: 38538218 DOI: 10.31083/j.jin2303066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 07/15/2024] Open
Abstract
Neuropeptides are endogenous active substances within the central and peripheral nervous systems that play important roles in a wide range of brain functions, including metabolism, food intake, social behavior, reproduction, learning, sleep, and wakefulness. This article reviews recent advances in the involvement of neuropeptides in vascular dementia. Neuropeptides are present in the brain as chemical signals and last for nearly 50 years. Peptide hormones are chemical signals of the endocrine system. Thus, neuropeptides are the most diverse class of signaling molecules in the brain, involving the genomes of many mammals, encoding neuropeptide precursors and many bioactive neuropeptides. Here the aim is to describe the recent advances in classical neuropeptides, as well as putative neuropeptides from other families, in the control of or as diagnostic tools for vascular dementia. Additionally, its molecular mechanisms are described to explore new avenues of treatment and early diagnosis, as there is increasing evidence that dysregulation of vascular processes is associated with different pathological conditions.
Collapse
Affiliation(s)
- Xue Yan
- Department of Traditional Chinese Medicine, Haikou Maternal and Child Health Hospital, 570102 Haikou, Hainan, China
| | - Yihong Ma
- Department of Rehabilitation, The Second Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Limin Yan
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Simin Li
- Stomatological Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, 271000 Taian, Shandong, China
| |
Collapse
|
3
|
Novikov YO, Akopyan AP, Gerasimova LP, Letzkus P. [Restorative capability of traditional Chinese medicine in autoimmune diseases of nervous system: a literature review]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 101:64-70. [PMID: 38639153 DOI: 10.17116/kurort202410102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Autoimmune diseases of the nervous system are characterized by the formation of pronounced neurological deficiency and often lead to disability. Complementary medicine as an adjuvant or preventive therapy of various diseases, including autoimmune ones, is increasingly attracting the attention of doctors and researchers. Traditional Chinese medicine (TCM) has a complex of treatment methods, including acupuncture, phytotherapy, nutrition, physical exercises and other methods that are often used in common with the recognized approaches of the official medical science. The article describes the TCM methods application in autoimmune diseases of nervous system, presents the practical experience of using acupuncture, phytotherapy, diet, physical exercises. It was concluded that TCM is important and frequently underestimated health care resource, especially in prevention and treatment of autoimmune diseases of nervous system.
Collapse
Affiliation(s)
| | - A P Akopyan
- Bashkir State Medical University, Ufa, Russia
| | | | - P Letzkus
- College of Integrated Chinese Medicine, Vinon-sur-Verdon, France
| |
Collapse
|
4
|
Xu Q, Zhang X, Ge S, Xu C, Lv Y, Shuai Z. Triptoquinone A and B exercise a therapeutic effect in systemic lupus erythematosus by regulating NLRC3. PeerJ 2023; 11:e15395. [PMID: 37312878 PMCID: PMC10259444 DOI: 10.7717/peerj.15395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/20/2023] [Indexed: 06/15/2023] Open
Abstract
The autoimmune disorder systemic lupus erythematosus (SLE) is multifaceted, with limited therapeutic alternatives and detrimental side effects, particularly on bones and joints. This research endeavors to examine the curative potential and underlying mechanisms of in addressing SLE-associated bone and joint complications. Triptoquinone A and triptoquinone B, constituents of Tripterygium wilfordii polyglycoside tablets (TGTs), exhibit antioxidant and anti-inflammatory attributes; nonetheless, its function in SLE therapy remains elusive. This investigation delves into the role of oxidative stress in systemic lupus erythematosus (SLE) and probes the prospective remedial effects of triptoquinone A and triptoquinone B on inflammation and cartilage deterioration in SLE-affected joints. Employing bioinformatics analyses, differentially expressed genes (DEGs) and protein-protein interactions were discerned in SLE, rheumatoid arthritis (RA), and osteoarthritis (OA) datasets. Enrichment analyses unveiled shared genes implicated in immune system regulation and toll-like receptor signaling pathways, among others. Subsequent examination of triptoquinone A and triptoquinone B revealed their capacity to diminish NLRC3 expression in chondrocytes, resulting in decreased pro-inflammatory cytokine levels and cartilage degradation enzyme expression. Suppression of NLRC3 augmented the protective effects of triptoquinone A and B, implying that targeting NLRC3 may constitute a potential therapeutic strategy for inflammation and cartilage degeneration-associated conditions in SLE patients. Our discoveries indicate that triptoquinone A and triptoquinone B may impede SLE progression via the NLRC3 axis, offering potential benefits for SLE-affected bone and joint health.
Collapse
Affiliation(s)
- Qinyao Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangzhi Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shangqing Ge
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chang Xu
- Department of Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanfan Lv
- Department of Internal Medicine, School Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Integrated Network Pharmacology and Proteomic Analyses of Targets and Mechanisms of Jianpi Tianjing Decoction in Treating Vascular Dementia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9021546. [PMID: 36714532 PMCID: PMC9876684 DOI: 10.1155/2023/9021546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023]
Abstract
Background Vascular dementia (VD), associated with cerebrovascular injury, is characterized by severe cognitive impairment. Jianpi Tianjing Decoction (JTD) has been widely used to treat VD. However, its molecular targets and mechanisms of action in this treatment remain unclear. This study integrated network pharmacology and proteomics to identify targets and mechanisms of JTD in the treatment of VD and to provide new insights and goals for clinical treatments. Methods Systematic network pharmacology was used to identify active chemical compositions, potential targets, and mechanisms of JTD in VD treatment. Then, a mouse model of VD was induced via transient bilateral common carotid artery occlusion to verify the identified targets and mechanisms of JTD against VD using 4D label-free quantitative proteomics. Results By screening active chemical compositions and potential targets in relevant databases, 187 active chemical compositions and 416 disease-related compound targets were identified. In vivo experiments showed that JTD improved learning and memory in mice. Proteomics also identified 112 differentially expressed proteins in the model and sham groups and the JTD and model groups. Integrating the network pharmacology and proteomics results revealed that JTD may regulate expressions of cytochrome c oxidase subunit 7C, metabotropic glutamate receptor 2, Slc30a1 zinc transporter 1, and apolipoprotein A-IV in VD mice and that their mechanisms involve biological processes like oxidative phosphorylation, regulation of neuron death, glutamate secretion, cellular ion homeostasis, and lipoprotein metabolism. Conclusions JTD may suppress VD development via multiple components, targets, and pathways. It may thus serve as a complementary treatment option for patients with VD.
Collapse
|
6
|
Liang J, Bao AL, Ma HY, Dong W, Li WH, Wu X, Li HY, Hou HY, Chen YQ, Fu JL, Shao C. Prevention of polycystic ovary syndrome and postmenopausal osteoporosis by inhibiting apoptosis with Shenling Baizhu powder compound. PeerJ 2022; 10:e13939. [PMID: 36325179 PMCID: PMC9620975 DOI: 10.7717/peerj.13939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 01/20/2023] Open
Abstract
Objective Shenling Baizhu powder (SBP) has been shown to reverse the abnormal expression of the aromatic hydrocarbon receptor (AHR) mediated by air pollution. Our study aimed to understand the main ingredient of SBP and investigate its action mechanism in preventing polycystic ovary syndrome (POCS) and postmenopausal osteoporosis (PMO). Methods The active ingredients of SBP with the highest binding affinity to AHR were screened using a Chinese medicine database, and their binding mechanism was simulated using molecular dynamics simulation (MDS). Rutin was utilized to treat ovarian granulosa cell lines and osteoblast cell lines. The cell lines were treated with a gradient of rutin concentration (0.01 mmol/L, 0.05 mmol/L and 0.1 mmol/L) to find the optimal drug dose. PCR was used to detect AHR and apoptosis-related proteins, and WB to detect the expression of AHR, caspase-3 and cleaved-caspase-3. Finally, the CCK-8 cell proliferation assay detected the proliferation of cells. Results We obtained Rutin through the Chinese medicine database, and dynamics simulation determined its binding sites. Ovarian granulosa cell lines and osteoblast cell lines were treated with Rutin. RT-PCR and western blotting revealed that the expression of apoptosis-associated protein Bcl-2 was elevated, and the expression of AHR, Bax, caspase-3 and PARP were decreased. CCK-8 results showed accelerated proliferation in both cell types. Conclusion Rutin, the main ingredient of SBP compound, works by binding to AHR, which can improve POCS and PMO by inhibiting cell apoptosis and by promoting cell proliferation.
Collapse
Affiliation(s)
- Jing Liang
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ai-li Bao
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-yu Ma
- Hebei General Hospital, Department of Traditional Chinese Medicine, Hebei, Chinese
| | - Wei Dong
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei-hua Li
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xi Wu
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han-yu Li
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-yan Hou
- Department of Obstetrics and Gynecology, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Ya-qiong Chen
- Department of Obstetrics and Gynecology, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Jia-lin Fu
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Shao
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Guo Y, Luo N, Kang X. Potential mechanism of the Shunaoxin pill for preventing cognitive impairment in type 2 diabetes mellitus. Front Neurol 2022; 13:977953. [PMID: 36341127 PMCID: PMC9633951 DOI: 10.3389/fneur.2022.977953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study aims to analyze the efficacy and mechanism of action of the Shunaoxin pill in preventing cognitive impairment in diabetic patients using network pharmacology. Methods The main active compounds of the Shunaoxin pills and their action targets were identified via the TCMSP and Batman-TCM databases. The GEO database was used to identify the genes in type 2 diabetic individuals associated with cognitive impairment. Subsequently, a common target protein-protein interaction (PPI) network was constructed using the STRING database, and targets associated with diabetes and cognitive impairment were screened by performing a topological analysis of the PPI network. The AutoDock Vina software was used for molecular docking to evaluate the reliability of the bioinformatic analysis predictions and validate the interactions between the active ingredients of the Shunaoxin pill and proteins associated with diabetes and cognitive impairment. Results Based on the TCMSP and Batman-Tcm platform, 48 active ingredients of the Shunaoxin pill were identified, corresponding to 222 potential action targets. Further analysis revealed that 18 active components of the Shunaoxin pill might contribute to cognitive impairment in type 2 diabetic patients. Molecular docking simulations demonstrated that the active ingredients of the Shunaoxin pill (hexadecanoic acid, stigmasterol, beta-sitosterol, and angelicin) targeted four core proteins: OPRK1, GABRA5, GABRP, and SCN3B. Conclusion Active ingredients of the Shunaoxin pill may alleviate cognitive impairment in diabetic patients by targeting the proteins OPRK1, GABRA5, GABRP, and SCN3B.
Collapse
Affiliation(s)
- Yuejie Guo
- Department of Geriatrics, The First People's Hospital of Chenzhou, Chenzhou, China
- *Correspondence: Yuejie Guo
| | - Ning Luo
- Department of Endocrinology, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Xueran Kang
- Shanghai Jiao Tong University College of Basic Sciences, Shanghai, China
| |
Collapse
|
8
|
Huang J, Lin W, Sun Y, Wang Q, He S, Han Z, Lu L, Kang X, Chen Y, Guo H, Cui Z, Sun C, Go K, Wu J, Yao M, Cao M, Xu Y. Quercetin targets VCAM1 to prevent diabetic cerebrovascular endothelial cell injury. Front Aging Neurosci 2022; 14:944195. [PMID: 36118693 PMCID: PMC9475220 DOI: 10.3389/fnagi.2022.944195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/08/2022] [Indexed: 12/06/2022] Open
Abstract
INTRODUCTION Endothelial cells play important roles in neurodegenerative diseases caused by diabetes, therefore, we aimed at investigating the mechanisms through which endothelial cells are involved in diabetes development. METHODS Single cell analysis was performed to identify the major endothelial cell subtypes in cardiovascular tissues that are involved in diabetes development. A cell-cell communication approach was then used to identify ligand-receptor interaction pairs between these cell types. Differential expression analysis between the two experimental groups [standard chow diet group and diabetogenic diet with cholesterol (DDC) group] was used to identify diabetes-related differentially expressed genes (DEGs). The upregulated genes were used to identify candidate ligands or receptors, as well as the corresponding cell types. Cell trajectory inference was performed to identify the stage of cell development and changes in expression of candidate ligands or receptors during cell development. Gene set enrichment analysis (GSEA) was conducted to investigate the biological functions of genes of purpose. Finally, molecular dynamics simulations (MDSs) were used to predict potential drugs with the ability to target the proteins of purpose. RESULTS Seven cell types, including five endothelial cell subtypes (EC_1, EC_2, EC_3, EC_4, and EC_EndMT), were identified from endothelial cell-enriched single cell samples from the heart and aorta of mice. Cell-cell communication analysis revealed the potential ligand-receptor interactions between these cell types while five important ligand-receptor-associated genes, including Fn1, Vcam1, Fbn1, Col4a1, and Col4a2, were established by differential expression analysis. Among them, Vcam1 is mainly expressed in EC_EndMT and is involved in interactions between EC_EndMT and other cells. Cell trajectory extrapolation analysis revealed a shift from EC_2/EC_4 to EC_EndMT and a shift from EC_EndMT to EC_3/EC_1 during the progression of diabetes. GSEA analysis revealed that upregulation of VCAM1 may have inhibitory effects on cell growth and energy metabolism. CONCLUSION EC_EndMT subtypes have a complex role in neurodegenerative diseases caused by diabetes. Through mechanisms involved in cell-cell communication, Vcam1 may play an important role in dysregulation of biological functions of EC_ EndMT. Molecular docking results of the quercetin-VCAM1 complex suggest that quercetin may be an effective drug for targeting this protein.
Collapse
Affiliation(s)
- Jiebin Huang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxing Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, China
| | - Shidian He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lixing Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine Shanghai, Shanghai, China
| | - Xueran Kang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine Shanghai, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoran Guo
- Chinese PLA Medical School, Beijing, China
| | - Zhiyong Cui
- Shanghai Jiao Tong University, Shanghai, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Ken Go
- St. Marianna Hospital, Tokyo, Japan
| | - Junyi Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Tai’an, Tai’an, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| |
Collapse
|
9
|
Zhang P, Jiang G, Wang Q, Wang Y, Ma Y, Li S, Li X, Li H, Xing X, Xu Y. Effects of Early Acupuncture Combined with Rehabilitation Training on Limb Function and Nerve Injury Rehabilitation in Elderly Patients with Stroke: Based on a Retrospective Cohort Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8557936. [PMID: 35502338 PMCID: PMC9056180 DOI: 10.1155/2022/8557936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVE A case-control study was conducted to explore the effect of acupuncture combined with rehabilitation training on limb function and nerve injury rehabilitation in elderly patients with stroke. METHODS A total of 72 elderly patients with stroke treated from March 2019 to June 2021 in our hospital were enrolled as the object of study. The clinical data were collected and divided into two groups according to their different treatment methods. The patients cured with routine treatment combined with rehabilitation training were taken as the control group and the patients cured with acupuncture combined with rehabilitation training as the study group. The clinical efficacy was recorded, and the cognition and activities of daily living were evaluated by Terrell Cognitive Assessment scale, limb motor function score, and activities of daily living scale. The National Institutes of Health Stroke Scale (NIHSS) and Glasgow Coma Scale (GCS) were employed to compare the neurological function before and after treatment. Glasgow Outcome Scale (GOS) and Disability Rating Scale (DRS) were adopted to evaluate the functional prognosis. The simplified Fugl-Meyer assessment of motor recovery score was employed to evaluate the limb function of the patients. The Wolf Motor Function Test (WMFT) score was adopted to evaluate the functional rehabilitation effect of the patients. Enzyme-linked immunosorbent assay (ELISA) was adopted to determine the serum neurological function indexes such as nerve growth factor, Smur100B protein, and glial fibrillary acidic protein. The cerebral blood flow (CBF), peak time, average transit time, and cerebral blood volume were measured by CT perfusion imaging, and the incidence of side effects during treatment was recorded. RESULTS Regarding the recovery of cognitive function and daily function after treatment, after treatment, the MoCA and ADL scores were increased, and the comparison indicated that the MoCA and ADL scores of the study group were remarkably higher compared to the control group (P < 0.05). With regard to the FMA-UE scores after treatment, the Fugl-Meyer scores were gradually increased, and the Fugl-Meyer scores in the study group were remarkably higher compared to the control group (P < 0.05) in the next two months. After 2 weeks, 4 weeks, 6 weeks, and 6 weeks of treatment, the WMFT scores gradually increased, and the WMFT score of the study group was remarkably higher compared to the control group. After treatment, the levels of nerve growth factor and S-100B protein were decreased, and the level of glial fibrillary acidic protein was increased. Comparison between the two groups, it indicated the improvement degree of each neurological function index in the study group was remarkably better (P < 0.05). With regard to cerebral hemodynamic indexes after treatment, 1 week after treatment, the CBF and average transit time of the observation group were remarkably higher compared to the control group, and the levels of cerebral blood volume and peak time were remarkably lower compared to the control group (P < 0.05). After 4 weeks of treatment, the cerebral hemodynamic indexes of the observation group did not change remarkably, and they were all lower than 1 week after the treatment. In the terms of side effects, 1 case of limb dysfunction, 1 case of swallowing dysfunction, 1 case of electrolyte disturbance, and none of infection in the study group, the incidence of adverse reactions was 8.33%. In the control group, there were 3 cases of limb dysfunction, 2 cases of swallowing dysfunction, 2 cases of electrolyte disturbance, and 3 cases of infection, and the incidence of adverse reactions was 27.78%. Compared between groups, the incidence of adverse reactions in the study group was lower (P < 0.05). CONCLUSION Early use of acupuncture combined with rehabilitation training has a remarkable therapeutic effect on elderly stroke patients. It can remarkably promote the recovery of the patient's condition, remarkably enhance their neurological function, cognitive function, motor function, and daily life function, and effectively strengthen the patient's prognosis score. It has important clinical application value to reduce the incidence of adverse reactions.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Guiling Jiang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Ying Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Hu Li
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Xiaomin Xing
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| |
Collapse
|