1
|
Boonyuen U, Jacob BAC, Chamchoy K, Pengsuk N, Talukam S, Petcharat C, Adams ER, Edwards T, Boonnak K, Amran SI, Ab Latif N, Louis NE. Improved genetic screening with zygosity detection through multiplex high-resolution melting curve analysis and biochemical characterisation for G6PD deficiency. Trop Med Int Health 2025; 30:437-457. [PMID: 40078033 PMCID: PMC12050165 DOI: 10.1111/tmi.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Accurate diagnosis of glucose-6-phosphate dehydrogenase (G6PD) deficiency is crucial for relapse malaria treatment using 8-aminoquinolines (primaquine and tafenoquine), which can trigger haemolytic anaemia in G6PD-deficient individuals. This is particularly important in regions where the prevalence of G6PD deficiency exceeds 3%-5%, including Southeast Asia and Thailand. While quantitative phenotypic tests can identify women with intermediate activity who may be at risk, they cannot unambiguously identify heterozygous females who require appropriate counselling. This study aimed to develop a genetic test for G6PD deficiency using high-resolution melting curve analysis, which enables zygosity identification of 15 G6PD alleles. In 557 samples collected from four locations in Thailand, the prevalence of G6PD deficiency based on indirect enzyme assay was 6.10%, with 8.08% exhibiting intermediate deficiency. The developed high-resolution melting assays demonstrated excellent performance, achieving 100% sensitivity and specificity in detecting G6PD alleles compared with Sanger sequencing. Genotypic variations were observed across four geographic locations, with the combination of c.1311C>T and c.1365-13T>C being the most common genotype. Compound mutations, notably G6PD Viangchan (c.871G>A, c.1311C>T and c.1365-13T>C), accounted for 15.26% of detected mutations. The high-resolution melting assays also identified the double mutation G6PD Chinese-4 + Canton and G6PD Radlowo, a variant found for the first time in Thailand. Biochemical and structural characterisation revealed that these variants significantly reduced catalytic activity by destabilising protein structure, particularly in the case of the Radlowo mutation. The refinement of these high-resolution melting assays presents a highly accurate and high-throughput platform that can improve patient care by enabling precise diagnosis, supporting genetic counselling and guiding public health efforts to manage G6PD deficiency-especially crucial in malaria-endemic regions where 8-aminoquinoline therapies pose a risk to deficient individuals.
Collapse
Affiliation(s)
- Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Beatriz Aira C. Jacob
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Kamonwan Chamchoy
- Princess Srisavangavadhana Faculty of MedicineChulabhorn Royal AcademyBangkokThailand
| | - Natnicha Pengsuk
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Sirinyatorn Talukam
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Chanya Petcharat
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Emily R. Adams
- Centre for Drugs and Diagnostics ResearchLiverpool School of Tropical MedicineLiverpoolUK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics ResearchLiverpool School of Tropical MedicineLiverpoolUK
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Syazwani Itri Amran
- Department of Biosciences, Faculty of ScienceUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
| | - Nurriza Ab Latif
- Department of Biosciences, Faculty of ScienceUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
| | - Naveen Eugene Louis
- Department of Biosciences, Faculty of ScienceUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
| |
Collapse
|
2
|
Boonyuen U, Jacob BAC, Wongwigkan J, Chamchoy K, Singha-Art N, Pengsuk N, Songdej D, Adams ER, Edwards T, Chamnanchanunt S, Amran SI, Latif NA, Louis NE, Chandran S. Genetic analysis and molecular basis of G6PD deficiency among malaria patients in Thailand: implications for safe use of 8-aminoquinolines. Malar J 2024; 23:38. [PMID: 38308253 PMCID: PMC10835850 DOI: 10.1186/s12936-024-04864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/27/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND It was hypothesized that glucose-6-phosphate dehydrogenase (G6PD) deficiency confers a protective effect against malaria infection, however, safety concerns have been raised regarding haemolytic toxicity caused by radical cure with 8-aminoquinolines in G6PD-deficient individuals. Malaria elimination and control are also complicated by the high prevalence of G6PD deficiency in malaria-endemic areas. Hence, accurate identification of G6PD deficiency is required to identify those who are eligible for malaria treatment using 8-aminoquinolines. METHODS The prevalence of G6PD deficiency among 408 Thai participants diagnosed with malaria by microscopy (71), and malaria-negative controls (337), was assessed using a phenotypic test based on water-soluble tetrazolium salts. High-resolution melting (HRM) curve analysis was developed from a previous study to enable the detection of 15 common missense, synonymous and intronic G6PD mutations in Asian populations. The identified mutations were subjected to biochemical and structural characterisation to understand the molecular mechanisms underlying enzyme deficiency. RESULTS Based on phenotypic testing, the prevalence of G6PD deficiency (< 30% activity) was 6.13% (25/408) and intermediate deficiency (30-70% activity) was found in 15.20% (62/408) of participants. Several G6PD genotypes with newly discovered double missense variants were identified by HRM assays, including G6PD Gaohe + Viangchan, G6PD Valladolid + Viangchan and G6PD Canton + Viangchan. A significantly high frequency of synonymous (c.1311C>T) and intronic (c.1365-13T>C and c.486-34delT) mutations was detected with intermediate to normal enzyme activity. The double missense mutations were less catalytically active than their corresponding single missense mutations, resulting in severe enzyme deficiency. While the mutations had a minor effect on binding affinity, structural instability was a key contributor to the enzyme deficiency observed in G6PD-deficient individuals. CONCLUSIONS With varying degrees of enzyme deficiency, G6PD genotyping can be used as a complement to phenotypic screening to identify those who are eligible for 8-aminoquinolines. The information gained from this study could be useful for management and treatment of malaria, as well as for the prevention of unanticipated reactions to certain medications and foods in the studied population.
Collapse
Affiliation(s)
- Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Beatriz Aira C Jacob
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jutamas Wongwigkan
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kamonwan Chamchoy
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Natsamon Singha-Art
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natnicha Pengsuk
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duantida Songdej
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Emily R Adams
- Centre for Drugs and Diagnostics Research, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics Research, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Supat Chamnanchanunt
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Syazwani Itri Amran
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Nurriza Ab Latif
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Naveen Eugene Louis
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Shamini Chandran
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
3
|
Chamchoy K, Sudsumrit S, Wongwigkan J, Petmitr S, Songdej D, Adams ER, Edwards T, Leartsakulpanich U, Boonyuen U. Molecular characterization of G6PD mutations identifies new mutations and a high frequency of intronic variants in Thai females. PLoS One 2023; 18:e0294200. [PMID: 37967096 PMCID: PMC10651042 DOI: 10.1371/journal.pone.0294200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked enzymopathy caused by mutations in the G6PD gene. A medical concern associated with G6PD deficiency is acute hemolytic anemia induced by certain foods, drugs, and infections. Although phenotypic tests can correctly identify hemizygous males, as well as homozygous and compound heterozygous females, heterozygous females with a wide range of G6PD activity may be misclassified as normal. This study aimed to develop multiplex high-resolution melting (HRM) analyses to enable the accurate detection of G6PD mutations, especially among females with heterozygous deficiency. Multiplex HRM assays were developed to detect six G6PD variants, i.e., G6PD Gaohe (c.95A>G), G6PD Chinese-4 (c.392G>T), G6PD Mahidol (c.487G>A), G6PD Viangchan (c.871G>A), G6PD Chinese-5 (c.1024C>T), and G6PD Union (c.1360C>T) in two reactions. The assays were validated and then applied to genotype G6PD mutations in 248 Thai females. The sensitivity of the HRM assays developed was 100% [95% confidence interval (CI): 94.40%-100%] with a specificity of 100% (95% CI: 88.78%-100%) for detecting these six mutations. The prevalence of G6PD deficiency was estimated as 3.63% (9/248) for G6PD deficiency and 31.05% (77/248) for intermediate deficiency by phenotypic assay. The developed HRM assays identified three participants with normal enzyme activity as heterozygous for G6PD Viangchan. Interestingly, a deletion in intron 5 nucleotide position 637/638 (c.486-34delT) was also detected by the developed HRM assays. G6PD genotyping revealed a total of 12 G6PD genotypes, with a high prevalence of intronic variants. Our results suggested that HRM analysis-based genotyping is a simple and reliable approach for detecting G6PD mutations, and could be used to prevent the misdiagnosis of heterozygous females by phenotypic assay. This study also sheds light on the possibility of overlooking intronic variants, which could affect G6PD expression and contribute to enzyme deficiency.
Collapse
Affiliation(s)
- Kamonwan Chamchoy
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sirapapha Sudsumrit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jutamas Wongwigkan
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Songsak Petmitr
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duantida Songdej
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Emily R. Adams
- Centre for Drugs and Diagnostics Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Thomas Edwards
- Centre for Drugs and Diagnostics Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Chen T, Fan C, Huang Y, Feng J, Zhang Y, Miao J, Wang X, Li Y, Huang C, Jin W, Tang C, Feng L, Yin Y, Zhu B, Sun M, Liu X, Xiang J, Tan M, Jia L, Chen L, Huang H, Peng H, Sun X, Gu X, Peng Z, Zhu B, Zou H, Han L. Genomic Sequencing as a First-Tier Screening Test and Outcomes of Newborn Screening. JAMA Netw Open 2023; 6:e2331162. [PMID: 37656460 PMCID: PMC10474521 DOI: 10.1001/jamanetworkopen.2023.31162] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
Importance Newborn screening via biochemical tests is in use worldwide. The availability of genetic sequencing has allowed rapid screening for a substantial number of monogenic disorders. However, the outcomes of this strategy have not been evaluated in a general newborn population. Objective To evaluate the outcomes of applying gene panel sequencing as a first-tier newborn screening test. Design, Setting, and Participants This cohort study included newborns who were prospectively recruited from 8 screening centers in China between February 21 and December 31, 2021. Neonates with positive results were followed up before July 5, 2022. Exposures All participants were concurrently screened using dried blood spots. The screen consisted of biochemical screening tests and a targeted gene panel sequencing test for 128 conditions. The biochemical and genomic tests could both detect 43 of the conditions, whereas the other 85 conditions were screened solely by the gene panel. Main Outcomes and Measures The primary outcomes were the number of patients detected by gene panel sequencing but undetected by the biochemical test. Results This study prospectively recruited 29 601 newborns (15 357 [51.2%] male). The mean (SD) gestational age was 39.0 (1.5) weeks, and the mean (SD) birth weight was 3273 (457) g. The gene panel sequencing screened 813 infants (2.7%; 95% CI, 2.6%-2.9%) as positive. By the date of follow-up, 402 infants (1.4%; 95% CI, 1.2%-1.5%) had been diagnosed, indicating the positive predictive value was 50.4% (95% CI, 50.0%-53.9%). The gene panel sequencing identified 59 patients undetected by biochemical tests, including 20 patients affected by biochemically and genetically screened disorders and 39 patients affected by solely genetically screened disorders, which translates into 1 out of every 500 newborns (95% CI, 1/385-1/625) benefiting from the implementation of gene panels as a first-tier screening test. Conclusions and Relevance In this cohort study, the use of gene panel sequencing in a general newborn population as a first-tier screening test improved the detection capability of traditional screening, providing an evidence-based suggestion that it could be considered as a crucial method for first-tier screening.
Collapse
Affiliation(s)
- Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research & Center for Clinical Innovation and Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunna Fan
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonglan Huang
- Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jizhen Feng
- Department of Genetics, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang, Hebei, China
| | - Yinhong Zhang
- Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jingkun Miao
- Department of Pediatrics, Chongqing Health Center for Women and Children & Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohua Wang
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, Inner Mongolia, China
| | - Yulin Li
- Neonatal Disease Screening Center, Jinan Maternity and Child Health Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cidan Huang
- Neonatal Disease Screening Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Weiwei Jin
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Chengfang Tang
- Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lulu Feng
- Department of Genetics, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang, Hebei, China
| | - Yifan Yin
- Department of Pediatrics, Chongqing Health Center for Women and Children & Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Zhu
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, Inner Mongolia, China
| | - Meng Sun
- Neonatal Disease Screening Center, Jinan Maternity and Child Health Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiulian Liu
- Neonatal Disease Screening Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | | | - Minyi Tan
- Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liyun Jia
- Department of Genetics, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang, Hebei, China
| | - Lei Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hui Huang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Xin Sun
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research & Center for Clinical Innovation and Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research & Center for Clinical Innovation and Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Baosheng Zhu
- Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hui Zou
- Neonatal Disease Screening Center, Jinan Maternity and Child Health Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research & Center for Clinical Innovation and Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|