1
|
Attique I, Haider Z, Khan M, Hassan S, Soliman MM, Ibrahim WN, Anjum S. Reactive Oxygen Species: From Tumorigenesis to Therapeutic Strategies in Cancer. Cancer Med 2025; 14:e70947. [PMID: 40377005 DOI: 10.1002/cam4.70947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Reactive oxygen species (ROS), a class of highly reactive molecules, are closely linked to the pathogenesis of various cancers. While ROS primarily originate from normal cellular processes, external stimuli can also contribute to their production. Cancer cells typically exhibit elevated ROS levels due to disrupted redox homeostasis, characterized by an imbalance between antioxidant and oxidant species. ROS play a dual role in cancer biology: at moderate levels, they facilitate tumor progression by regulating oncogenes and tumor suppressor genes, inducing mutations, promoting proliferation, extracellular matrix remodeling, invasion, immune modulation, and angiogenesis. However, excessive ROS levels can cause cellular damage and initiate apoptosis, necroptosis, or ferroptosis. METHODS This review explores molecular targets involved in redox homeostasis dysregulation and examines the impact of ROS on the tumor microenvironment (TME). Literature from recent in vitro and in vivo studies was analyzed to assess how ROS modulation contributes to cancer development and therapy. RESULTS Findings indicate that ROS influence cancer progression through various pathways and cellular mechanisms. Targeting ROS synthesis or enhancing ROS accumulation in tumor cells has shown promising anticancer effects. These therapeutic strategies exhibit significant potential to impair tumor growth while also interacting with elements of the TME. CONCLUSION The ROS serve as both promoters and suppressors of cancer depending on their intracellular concentration. Their complex role offers valuable opportunities for targeted cancer therapies. While challenges remain in precisely modulating ROS for therapeutic benefit, they hold promise as synergistic agents alongside conventional treatments, opening new avenues in cancer management.
Collapse
Affiliation(s)
- Iqra Attique
- Department of Biotechnology, Kinnaird College for Women University, Lahore, Pakistan
| | - Zahra Haider
- Department of Biotechnology, Kinnaird College for Women University, Lahore, Pakistan
| | - Maha Khan
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Samina Hassan
- Department of Botany, Kinnaird College for Women University, Lahore, Pakistan
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women University, Lahore, Pakistan
| |
Collapse
|
2
|
Wu Y, Chen Y, Tian X, Shao G, Lin Q, Sun A. Ubiquitination regulates autophagy in cancer: simple modifications, promising targets. J Transl Med 2024; 22:985. [PMID: 39482684 PMCID: PMC11526641 DOI: 10.1186/s12967-024-05565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 11/03/2024] Open
Abstract
Autophagy is an important lysosomal degradation process that digests and recycles bio-molecules, protein or lipid aggregates, organelles, and invaded pathogens. Autophagy plays crucial roles in regulation of metabolic and oxidative stress and multiple pathological processes. In cancer, the role of autophagy is dual and paradoxical. Ubiquitination has been identified as a key regulator of autophagy that can influence various steps in the autophagic process, with autophagy-related proteins being targeted for ubiquitination, thus impacting cancer progression and the effectiveness of therapeutic interventions. This review will concentrate on mechanisms underlying autophagy, ubiquitination, and their interactions in cancer, as well as explore the use of drugs that target the ubiquitin-proteasome system (UPS) and ubiquitination process in autophagy as part of cancer therapy.
Collapse
Affiliation(s)
- Yihui Wu
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yifei Chen
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
3
|
Shen X, Xia Y, Lu H, Zheng P, Wang J, Chen Y, Xu C, Qiu C, Zhang Y, Xiao Z, Zou P, Cui R, Ni D. Synergistic targeting of TrxR1 and ATM/AKT pathway in human colon cancer cells. Biomed Pharmacother 2024; 174:116507. [PMID: 38565059 DOI: 10.1016/j.biopha.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Thioredoxin reductase 1 (TrxR1) has emerged as a promising target for cancer therapy. In our previous research, we discovered several new TrxR1 inhibitors and found that they all have excellent anti-tumor activity. At the same time, we found these TrxR1 inhibitors all lead to an increase in AKT phosphorylation in cancer cells, but the detailed role of AKT phosphorylation in TrxR1 inhibitor-mediated cell death remains unclear. In this study, we identified the combination of AKT and TrxR1 inhibitor displayed a strong synergistic effect in colon cancer cells. Furthermore, we demonstrated that the synergistic effect of auranofin (TrxR1 inhibitor) and MK-2206 (AKT inhibitor) was caused by ROS accumulation. Importantly, we found that ATM inhibitor KU-55933 can block the increase of AKT phosphorylation caused by auranofin, and exhibited a synergistic effect with auranofin. Taken together, our study demonstrated that the activation of ATM/AKT pathway is a compensatory mechanism to cope with ROS accumulation induced by TrxR1 inhibitor, and synergistic targeting of TrxR1 and ATM/AKT pathway is a promising strategy for treating colon cancer.
Collapse
Affiliation(s)
- Xin Shen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yiqun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hui Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Peisen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Junqi Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yinghua Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Chenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Chenyu Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yafei Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Peng Zou
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Ri Cui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Daoyong Ni
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Zhao Y, Ye X, Xiong Z, Ihsan A, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Anadón A, Wang X, Martínez MA. Cancer Metabolism: The Role of ROS in DNA Damage and Induction of Apoptosis in Cancer Cells. Metabolites 2023; 13:796. [PMID: 37512503 PMCID: PMC10383295 DOI: 10.3390/metabo13070796] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is a huge challenge for people worldwide. High reactive oxygen species (ROS) levels are a recognized hallmark of cancer and an important aspect of cancer treatment research. Abnormally elevated ROS levels are often attributable to alterations in cellular metabolic activities and increased oxidative stress, which affects both the development and maintenance of cancer. Moderately high levels of ROS are beneficial to maintain tumor cell genesis and development, while toxic levels of ROS have been shown to be an important force in destroying cancer cells. ROS has become an important anticancer target based on the proapoptotic effect of toxic levels of ROS. Therefore, this review summarizes the role of increased ROS in DNA damage and the apoptosis of cancer cells caused by changes in cancer cell metabolism, as well as various anticancer therapies targeting ROS generation, in order to provide references for cancer therapies based on ROS generation.
Collapse
Affiliation(s)
- Yongxia Zhao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaochun Ye
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhifeng Xiong
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|