1
|
Sankar S, Kalidass B, Indrakumar J, Kodiveri Muthukaliannan G. NSAID-encapsulated nanoparticles as a targeted therapeutic platform for modulating chronic inflammation and inhibiting cancer progression: a review. Inflammopharmacology 2025:10.1007/s10787-025-01760-8. [PMID: 40285986 DOI: 10.1007/s10787-025-01760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Recent advancements in nanotechnology have significantly advanced nanocarrier-mediated drug delivery systems, promoting therapeutic outcomes in mitigating chronic inflammation and cancer. Nanomaterials offer significant advantages over traditional small-molecule drugs, including a high surface-area-to-volume ratio, tunable structural features, and extended bloodstream circulation time. Chronic inflammation is a well-established mechanism for malignant initiation, progression, and metastasis, promoting the potent strategy for cancer prevention and therapy. Numerous studies revealed that nonsteroidal anti-inflammatory drugs (NSAIDs) have the therapeutic ability to manage disease progression via amolerating angiogenesis and inducing apoptosis. However, prolonged intake of NSAIDs is often limited by adverse side-effects and systemic toxicities. The encapsulation of NSAIDs in a nanocarrier have materialized as a dynamic approach to mitigate the limitations by improving pharmacokinetics and pharmacodynamics, reducing off-target effects, and enhancing the drug stability. This review encompasses recent progress in the development of NSAID-based nanotherapeutics, focusing on pivotal mechanisms underlying nanoparticle-mediated drug delivery, such as improved tumor-specific targeting and strategies to overcome drug resistance. The ability of these nano-cargoes to accommodate anti-inflammatory strategies with advanced drug delivery platforms is critically evaluated. This review also highlights the transformative potential of NSAID-encapsulated nanoparticles as a multifaceted therapeutic venue for addressing chronic inflammation and mitigating cancer progression.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Bharathi Kalidass
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Janani Indrakumar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
2
|
Lim JX, Yong YK, Dewi FRP, Chan SY, Lim V. Nanoscale strategies: doxorubicin resistance challenges and enhancing cancer therapy with advanced nanotechnological approaches. Drug Deliv Transl Res 2025:10.1007/s13346-025-01790-3. [PMID: 39955406 DOI: 10.1007/s13346-025-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Doxorubicin (DOX), an anthracycline, is widely used in cancer treatment by interfering RNA and DNA synthesis. Its broad antitumour spectrum makes it an effective therapy for a wide array of cancers. However, the prevailing drug-resistant cancer has proven to be a significant drawback to the success of the conventional chemotherapy regime and DOX has been identified as a major hurdle. Furthermore, the clinical application of DOX has been limited by rapid breakdown, increased toxicity, and decreased half-time life, highlighting an urgent need for more innovative delivery methods. Although advancements have been made, achieving a complete cure for cancer remains elusive. The development of nanoparticles offers a promising avenue for the precise delivery of DOX into the tumour microenvironment, aiming to increase the drug concentration at the target site while reducing side effects. Despite the good aspects of this technology, the classical nanoparticles struggle with issues such as premature drug leakage, low bioavailability, and insufficient penetration into tumours due to an inadequate enhanced permeability and retention (EPR) effect. Recent advancements have focused on creating stimuli-responsive nanoparticles and employing various chemosensitisers, including natural compounds and nucleic acids, fortifying the efficacy of DOX against resistant cancers. The efforts to refine nanoparticle targeting precision to improve DOX delivery are reviewed. This includes using receptor-mediated endocytosis systems to maximise the internalisation of drugs. The potential benefits and drawbacks of these novel techniques constitute significant areas of ongoing study, pointing to a promising path forward in addressing the challenges posed by drug-resistant cancers.
Collapse
Affiliation(s)
- Jian Xin Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
3
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Golshekan M, Abedinzade M, Ahmadi E, Neha S, Najafi M. Revolutionizing Cancer Treatment: Harnessing the Power of Mesenchymal Stem Cells for Precise Targeted Therapy in the Tumor Microenvironment. Curr Top Med Chem 2025; 25:243-262. [PMID: 38797895 DOI: 10.2174/0115680266299112240514103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
In recent years, mesenchymal stem cells (MSCs) have emerged as promising anti-- cancer mediators with the potential to treat several cancers. MSCs have been modified to produce anti-proliferative, pro-apoptotic, and anti-angiogenic molecules that could be effective against a variety of malignancies. Additionally, customizing MSCs with cytokines that stimulate pro-tumorigenic immunity or using them as vehicles for traditional chemical molecules with anti-cancer characteristics. Even though the specific function of MSCs in tumors is still challenged, promising outcomes from preclinical investigations of MSC-based gene therapy for a variety of cancers inspire the beginning of clinical trials. In addition, the tumor microenvironment (TME) could have a substantial influence on normal tissue stem cells, which can affect the treatment outcomes. To overcome the complications of TME in cancer development, MSCs could provide some signs of hope for converting TME into unequivocal therapeutic tools. Hence, this review focuses on engineered MSCs (En-MSCs) as a promising approach to overcoming the complications of TME.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mostafa Golshekan
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmoud Abedinzade
- Department of Medical Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Ahmadi
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Singh Neha
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Herdiana Y, Febrina E, Nurhasanah S, Gozali D, Elamin KM, Wathoni N. Drug Loading in Chitosan-Based Nanoparticles. Pharmaceutics 2024; 16:1043. [PMID: 39204388 PMCID: PMC11359066 DOI: 10.3390/pharmaceutics16081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Chitosan nanoparticles (CSNPs) are promising vehicles for targeted and controlled drug release. Recognized for their biodegradability, biocompatibility, low toxicity, and ease of production, CSNPs represent an effective approach to drug delivery. Encapsulating drugs within nanoparticles (NPs) provides numerous benefits compared to free drugs, such as increased bioavailability, minimized toxic side effects, improved delivery, and the incorporation of additional features like controlled release, imaging agents, targeted delivery, and combination therapies with multiple drugs. Keys parameters in nanomedicines are drug loading content and drug loading efficiency. Most current NP systems struggle with low drug loading, presenting a significant challenge to the field. This review summarizes recent research on developing CSNPs with high drug loading capacity, focusing on various synthesis strategies. It examines CSNP systems using different materials and drugs, providing details on their synthesis methods, drug loadings, encapsulation efficiencies, release profiles, stability, and applications in drug delivery. Additionally, the review discusses factors affecting drug loading, providing valuable guidelines for future CSNPs' development.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Ellin Febrina
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Siti Nurhasanah
- Faculty of Agricultural Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
5
|
Liga S, Paul C, Moacă EA, Péter F. Niosomes: Composition, Formulation Techniques, and Recent Progress as Delivery Systems in Cancer Therapy. Pharmaceutics 2024; 16:223. [PMID: 38399277 PMCID: PMC10892933 DOI: 10.3390/pharmaceutics16020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Niosomes are vesicular nanocarriers, biodegradable, relatively non-toxic, stable, and inexpensive, that provide an alternative for lipid-solid carriers (e.g., liposomes). Niosomes may resolve issues related to the instability, fast degradation, bioavailability, and insolubility of different drugs or natural compounds. Niosomes can be very efficient potential systems for the specific delivery of anticancer, antioxidant, anti-inflammatory, antimicrobial, and antibacterial molecules. This review aims to present an overview of their composition, the most common formulation techniques, as well as of recent utilizations as delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Sergio Liga
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
| | - Cristina Paul
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania;
| | - Francisc Péter
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
- Research Institute for Renewable Energies, Politehnica University Timișoara, Gavril Muzicescu 138, 300501 Timișoara, Romania
| |
Collapse
|
6
|
Puranik N, Yadav D, Song M. Advancements in the Application of Nanomedicine in Alzheimer's Disease: A Therapeutic Perspective. Int J Mol Sci 2023; 24:14044. [PMID: 37762346 PMCID: PMC10530821 DOI: 10.3390/ijms241814044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects most people worldwide. AD is a complex central nervous system disorder. Several drugs have been designed to cure AD, but with low success rates. Because the blood-brain and blood-cerebrospinal fluid barriers are two barriers that protect the central nervous system, their presence has severely restricted the efficacy of many treatments that have been studied for AD diagnosis and/or therapy. The use of nanoparticles for the diagnosis and treatment of AD is the focus of an established and rapidly developing field of nanomedicine. Recent developments in nanomedicine have made it possible to effectively transport drugs to the brain. However, numerous obstacles remain to the successful use of nanomedicines in clinical settings for AD treatment. Furthermore, given the rapid advancement in nanomedicine therapeutics, better outcomes for patients with AD can be anticipated. This article provides an overview of recent developments in nanomedicine using different types of nanoparticles for the management and treatment of AD.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (D.Y.)
| |
Collapse
|
7
|
Akhlaq A, Ashraf M, Omer MO, Altaf I. Carvacrol-Fabricated Chitosan Nanoparticle Synergistic Potential with Topoisomerase Inhibitors on Breast and Cervical Cancer Cells. ACS OMEGA 2023; 8:31826-31838. [PMID: 37692253 PMCID: PMC10483689 DOI: 10.1021/acsomega.3c03337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Breast and cervical cancers are the most common heterogeneous malignancies in women. Chemotherapy with conventional drug delivery systems having several limitations along with development of multidrug resistance compelled us to seek out targeted therapeutics. Nanoparticles are suitable substitutes to circumvent multidrug resistance for the targeted treatment of cancer. The current study was aimed to investigate the anticancer effect of carvacrol-loaded chitosan nanoparticles with topoisomerase inhibitors. The average size of carvacrol-loaded chitosan nanoparticles was found to be 80 nm with 24.7 mV ζ-potential, and maximum absorbance was observed at 275 nm. Among all drug combinations, the carvacrol nanoparticles with the doxorubicin combination group exerted greater dose-dependent growth inhibition of both MCF-7 and HeLa cells as compared to single carvacrol nanoparticles and doxorubicin. Combination index values of carvacrol nanoparticles and the doxorubicin combination group showed a strong synergistic effect as they were found to be between 0.2 and 0.4, 0.31 for MCF-7 and 0.34 for HeLa cells. The carvacrol nanoparticles in combination with doxorubicin on MCF-7 cells reduced the dose 16.32-fold for carvacrol nanoparticles and 4.09-fold for doxorubicin at 6.23 μg/mL IC50, while on HeLa cells, this combination reduced the dose 13.18-fold for carvacrol nanoparticles and 3.83-fold for doxorubicin at 9.33 μg/mL IC50. As the dose reduction values were greater than 1, they indicated favorable dose reduction. It was concluded that the combination of carvacrol-loaded chitosan nanoparticles with topoisomerase inhibitors may represent an innovative and promising strategy to improve the efficacy, resistance, and targeted delivery of chemotherapeutics in cancer.
Collapse
Affiliation(s)
- Amina Akhlaq
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ashraf
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ovais Omer
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Imran Altaf
- Institute
of Microbiology, University of Veterinary
and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
8
|
Wang C, Cheng X, Peng H, Zhang Y. NIR-Triggered and ROS-Boosted Nanoplatform for Enhanced Chemo/PDT/PTT Synergistic Therapy of Sorafenib in Hepatocellular Carcinoma. NANOSCALE RESEARCH LETTERS 2022; 17:92. [PMID: 36125619 PMCID: PMC9489827 DOI: 10.1186/s11671-022-03729-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
Although being the first-line treatment of advanced hepatocellular carcinoma (HCC), sorafenib (SOR) outcome is limited due to drug resistance and low tumor accumulation. Herein, with MnO2 as photothermal agent and chlorine6 (Ce6) as photosensitizer, a tumor-targeting and NIR-triggered multifunctional nanoplatform loading sorafenib (MnO2-SOR-Ce6@PDA-PEG-FA, MSCPF) was constructed. Owing to oxygen generator MnO2, MSCPF could generate excessive ROS, thus can alleviate tumor hypoxia and improve sorafenib accumulation in cancer cells. Besides, ROS production further strengthens Ce6-mediated PDT and PDA-mediated PTT. By exploiting these features, MSCPF exhibited excellent antitumor effects on HCC in the in vitro and in vivo studies, compared to solo sorafenib or PDT/PTT treatment. Further mechanism experiments suggested that MSCPF could inhibit P-gp expression and induce ferroptosis via deactivation of GPX4 and SLC7A11, which ultimately enhanced the antitumor efficacy of SOR. In summary, our work highlights a promising NIR-triggered and ROS-boosted nanoplatform for enhanced chemo/PDT/PTT synergistic therapy of SOR in HCC treatment.
Collapse
Affiliation(s)
- Chonggao Wang
- Medical School, Southeast University, Nanjing, 210009, China
- Nanjing Hospital of Chinese Medicine, Nanjing, 210000, China
| | - Xiaolan Cheng
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Yewei Zhang
- Medical School, Southeast University, Nanjing, 210009, China.
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162851. [PMID: 36014715 PMCID: PMC9413373 DOI: 10.3390/nano12162851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jessica Lilian Bell
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
10
|
Hu T, Gong H, Xu J, Huang Y, Wu F, He Z. Nanomedicines for Overcoming Cancer Drug Resistance. Pharmaceutics 2022; 14:pharmaceutics14081606. [PMID: 36015232 PMCID: PMC9412887 DOI: 10.3390/pharmaceutics14081606] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Clinically, cancer drug resistance to chemotherapy, targeted therapy or immunotherapy remains the main impediment towards curative cancer therapy, which leads directly to treatment failure along with extended hospital stays, increased medical costs and high mortality. Therefore, increasing attention has been paid to nanotechnology-based delivery systems for overcoming drug resistance in cancer. In this respect, novel tumor-targeting nanomedicines offer fairly effective therapeutic strategies for surmounting the various limitations of chemotherapy, targeted therapy and immunotherapy, enabling more precise cancer treatment, more convenient monitoring of treatment agents, as well as surmounting cancer drug resistance, including multidrug resistance (MDR). Nanotechnology-based delivery systems, including liposomes, polymer micelles, nanoparticles (NPs), and DNA nanostructures, enable a large number of properly designed therapeutic nanomedicines. In this paper, we review the different mechanisms of cancer drug resistance to chemotherapy, targeted therapy and immunotherapy, and discuss the latest developments in nanomedicines for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Jiayue Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Yuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Fengbo Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| |
Collapse
|
11
|
Xia M, Guo Z, Liu X, Wang Y, Xiao C. A glutathione-responsive sulfur dioxide polymer prodrug selectively induces ferroptosis in gastric cancer therapy. Biomater Sci 2022; 10:4184-4192. [PMID: 35727040 DOI: 10.1039/d2bm00678b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticle-induced ferroptosis has been proven to be an appealing strategy in cancer treatment. Previously, we reported the synthesis of an amphiphilic polymer prodrug of SO2, mPEG-PLG(DNs), which could self-assemble to formulate nanoparticles (NP-DNs) and trigger cancer cell death by GSH consumption and SO2 release. In the current study, the potential mechanism of NP-DNs-induced cell death was further investigated. We demonstrated that NP-DNs exhibited efficient antitumor activity against gastric cancer via ferroptosis. NP-DNs could selectively accelerate lipid peroxidation through GSH depletion and SO2 generation in gastric cancer cells. In addition, the NP-DNs-induced GPX4 reduction played a collaborative role in ferroptosis. Concurrently, in vivo evaluations revealed that NP-DNs not only exhibited excellent antitumor efficiency via ferroptosis but also caused little systemic toxicity in mice. All the results showed that NP-DNs would be a promising prodrug in precision-targeted ferroptosis therapy.
Collapse
Affiliation(s)
- Mingjie Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China. .,Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Zhihui Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xinming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China.
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
12
|
Ahmed T, Liu FCF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022; 19:1722-1765. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Globally, a rising burden of complex diseases takes a heavy toll on human lives and poses substantial clinical and economic challenges. This review covers nanomedicine and nanotechnology-enabled advanced drug delivery systems (DDS) designed to address various unmet medical needs. Key nanomedicine and DDSs, currently employed in the clinic to tackle some of these diseases, are discussed focusing on their versatility in diagnostics, anticancer therapy, and diabetes management. First-hand experiences from our own laboratory and the work of others are presented to provide insights into strategies to design and optimize nanomedicine- and nanotechnology-enabled DDS for enhancing therapeutic outcomes. Computational analysis is also briefly reviewed as a technology for rational design of controlled release DDS. Further explorations of DDS have illuminated the interplay of physiological barriers and their impact on DDS. It is demonstrated how such delivery systems can overcome these barriers for enhanced therapeutic efficacy and how new perspectives of next-generation DDS can be applied clinically.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Elliya Park
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Amin Ghavaminejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|