1
|
Zhang P, Zhang X, Zhu X, Hua Y. Chemical Constituents, Bioactivities, and Pharmacological Mechanisms of Dendrobium officinale: A Review of the Past Decade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14870-14889. [PMID: 37800982 DOI: 10.1021/acs.jafc.3c04154] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Dendrobium officinale, a plant in the Orchidaceae family, has been used in traditional Chinese medicine for thousands of years. Sweet and slightly cold in nature, it can invigorate the stomach, promote fluid production, nourish Yin, and dissipate heat. Over the past decade, more than 60 compounds have been derived from D. officinale, including flavonoids, bibenzyl, and phenanthrene. Various studies have explored the underlying pharmacological mechanisms of these compounds, which have shown antitumor, hypoglycemic, hypertensive, gastrointestinal-regulatory, visceral organ protection, antiaging, and neurorestorative effects. This paper presents a systematic review of the structural classification, biological activity, and pharmacological mechanisms of different chemical components obtained from D. officinale over the past decade. This review aims to provide a reference for future study and establish a foundation for clinical applications. Furthermore, this review identifies potential shortcomings in current research as well as potential directions and methodologies in future plant research.
Collapse
Affiliation(s)
- Ping Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingyu Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingyi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunfen Hua
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Su Y, Bai Q, Tao H, Xu B. Prospects for the application of traditional Chinese medicine network pharmacology in food science research. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 36882903 DOI: 10.1002/jsfa.12541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
There has always been a particular difficulty with in-depth research on the mechanisms of food nutrition and bioactivity. The main function of food is to meet the nutritional needs of the human body, rather than to exert a therapeutic effect. Its relatively modest biological activity makes it difficult to study from the perspective of general pharmacological models. With the popularity of functional foods and the concept of dietary therapy, and the development of information and multi-omics technology in food research, research into these mechanisms is moving towards a more microscopic future. Network pharmacology has accumulated nearly 20 years of research experience in traditional Chinese medicine (TCM), and there has been no shortage of work from this perspective on the medicinal functions of food. Given the similarity between the concept of 'multi-component-multi-target' properties of food and TCM, we think that network pharmacology is applicable to the study of the complex mechanisms of food. Here we review the development of network pharmacology, summarize its application to 'medicine and food homology', and propose a methodology based on food characteristics for the first time, demonstrating its feasibility for food research. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qiong Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Tao S, Li J, Wang H, Ding S, Han W, He R, Ren Z, Wei G. Anti-colon Cancer Effects of Dendrobium officinale Kimura & Migo Revealed by Network Pharmacology Integrated With Molecular Docking and Metabolomics Studies. Front Med (Lausanne) 2022; 9:879986. [PMID: 35847793 PMCID: PMC9280342 DOI: 10.3389/fmed.2022.879986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
Objective The present study aimed to investigate the potential mechanism of Dendrobium officinale (D. officinale) on colorectal cancer and the relevant targets in the pathway using a network pharmacological approach. Methods (1) We identified the major bioactive components of D. officinale by UPLC-ESI-MS/MS and established the in-house library by using the literature mining method. (2) Target prediction was performed by SwissADME and SwissTargetPrediction. (3) A protein–protein interaction (PPI) network and component–target–pathway network (C-T-P network) were constructed. (4) The GO pathways and the KEGG pathway enrichment analysis were carried out by the Metascape database. (5) Molecular docking was performed by AutoDock software. (6) A series of experimental assays including cell proliferation, cell invasion and migration, and TUNEL staining in CRC were performed in CRC cell lines (HT-29, Lovo, SW-620, and HCT-116) to confirm the inhibitory effects of D. officinale. Results (1) In total, 396 candidate active components of D. officinale were identified by UPLC-ESI-MS/MS and selected from the database. (2) From OMIM, GeneCards, DrugBank, and TTD databases, 1,666 gene symbols related to CRC were gathered, and (3) 34 overlapping gene symbols related to CRC and drugs were obtained. (4) These results suggested that the anti-CRC components of D. officinale were mainly apigenin, naringenin, caffeic acid, γ-linolenic acid, α-linolenic acid, cis-10-heptadecenoic acid, etc., and the core targets of action were mainly ESR1, EGFR, PTGS2, MMP9, MMP2, PPARG, etc. (5) The proliferation of muscle cells, the regulation of inflammatory response, the response of cells to organic cyclic compounds, and the apoptotic signaling pathway might serve as principal pathways for CRC treatment. (6) The reliability of some important active components and targets was further validated by molecular docking. The molecular docking analysis suggested an important role of apigenin, naringenin, PTGS2, and MMP9 in delivering the pharmacological activity of D. officinale against CRC. (7) These results of the evaluation experiment in vitro suggested that D. officinale had a strong inhibitory effect on CRC cell lines, and it exerted anti-CRC activity by activating CRC cell apoptosis and inhibiting CRC cell migration and invasion. Conclusion This study may provide valuable insights into exploring the mechanism of action of D. officinale against CRC.
Collapse
Affiliation(s)
- Shengchang Tao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Jinyan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Centre of Chinese Herbal Resource, Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan, China
| | - Huan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Centre of Chinese Herbal Resource, Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan, China
| | - Shaobo Ding
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Weichao Han
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Ruirong He
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zhiyao Ren
- The Research Centre of Chinese Herbal Resource, Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Gang Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Gang Wei
| |
Collapse
|