1
|
Chen L, Zhao W, Li M, Yang Y, Tian C, Zhang D, Chang Z, Zhang Y, Zhao ZJ, Chen Y, Ma L. SHP2 participates in decidualization by activating ERK to maintain normal nuclear localization of progesterone receptor. Reproduction 2023; 166:37-53. [PMID: 37184079 PMCID: PMC10304905 DOI: 10.1530/rep-22-0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
In brief The establishment and maintenance of embryo implantation and pregnancy require decidualization of endometrial stromal cells. This paper reveals that SHP2 ensures the correct subcellular localization of progesterone receptor, thereby safeguarding the process of decidualization. Abstract Decidualization is the process of conversion of endometrial stromal cells into decidual stromal cells, which is caused by progesterone production that begins during the luteal phase of the menstrual cycle and then increases throughout pregnancy dedicated to support embryonic development. Decidualization deficiency is closely associated with various pregnancy complications, such as recurrent miscarriage (RM). Here, we reported that Src-homology-2-containing phospho-tyrosine phosphatase (SHP2), a key regulator in the signal transduction process downstream of various receptors, plays an indispensable role in decidualization. SHP2 expression was upregulated during decidualization. SHP2 inhibitor RMC-4550 and shRNA-mediated SHP2 reduction resulted in a decreased level of phosphorylation of ERK and aberrant cytoplasmic localization of progesterone receptor (PR), coinciding with reduced expression of IGFBP1 and various other target genes of decidualization. Solely inhibiting ERK activity recapitulated these observations. Administration of RMC-4550 led to decidualization deficiency and embryo absorption in mice. Moreover, reduced expression of SHP2 was detected in the decidua of RM patients. Our results revealed that SHP2 is key to PR's nuclear localization, thereby indispensable for decidualization and that reduced expression of SHP2 might be engaged in the pathogenesis of RM.
Collapse
Affiliation(s)
- Lin Chen
- Center for Reproductive Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weijie Zhao
- Center for Reproductive Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Mengxiong Li
- Department of Gynaecology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yazhu Yang
- Center for Reproductive Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chengzi Tian
- Center for Reproductive Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunzhe Zhang
- Faculty of Life Sciences and Medicine, Kings College London, London, United Kingdom
| | - Zhizhuang Joe Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lin Ma
- Center for Reproductive Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Gelb BD, Yohe ME, Wolf C, Andelfinger G. New prospectives on treatment opportunities in RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:541-560. [PMID: 36533679 PMCID: PMC10150944 DOI: 10.1002/ajmg.c.32024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
The RASopathies are a group of clinically defined developmental syndromes caused by germline variants of the RAS/mitogen-activated protein (MAPK) cascade. The prototypic RASopathy is Noonan syndrome, which has phenotypic overlap with related disorders such as cardiofaciocutaneous syndrome, Costello syndrome, Noonan syndrome with multiple lentigines, and others. In this state-of-the-art review, we summarize current knowledge on unmet therapeutic needs in these diseases and novel treatment approaches informed by insights from RAS/MAPK-associated cancer therapies, in particular through inhibition of MEK1/2 and mTOR in patients with severe disease manifestations. We explore the possibilities of integrating a larger arsenal of molecules currently under development into future care plans. Lastly, we describe both medical and ethical challenges and opportunities for future clinical trials in the field.
Collapse
Affiliation(s)
- Bruce D. Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marielle E. Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Cordula Wolf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, School of Medicine & Health, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Gregor Andelfinger
- CHU Sainte Justine, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
3
|
The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. Int J Mol Sci 2022; 23:ijms231911759. [PMID: 36233058 PMCID: PMC9569637 DOI: 10.3390/ijms231911759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Motoneuron diseases (MNDs) are neurodegenerative conditions associated with death of upper and/or lower motoneurons (MNs). Proteostasis alteration is a pathogenic mechanism involved in many MNDs and is due to the excessive presence of misfolded and aggregated proteins. Protein misfolding may be the product of gene mutations, or due to defects in the translation process, or to stress agents; all these conditions may alter the native conformation of proteins making them prone to aggregate. Alternatively, mutations in members of the protein quality control (PQC) system may determine a loss of function of the proteostasis network. This causes an impairment in the capability to handle and remove aberrant or damaged proteins. The PQC system consists of the degradative pathways, which are the autophagy and the proteasome, and a network of chaperones and co-chaperones. Among these components, Heat Shock Protein 70 represents the main factor in substrate triage to folding, refolding, or degradation, and it is assisted in this task by a subclass of the chaperone network, the small heat shock protein (sHSPs/HSPBs) family. HSPBs take part in proteostasis by bridging misfolded and aggregated proteins to the HSP70 machinery and to the degradative pathways, facilitating refolding or clearance of the potentially toxic proteins. Because of its activity against proteostasis alteration, the chaperone system plays a relevant role in the protection against proteotoxicity in MNDs. Here, we discuss the role of HSPBs in MNDs and which HSPBs may represent a valid target for therapeutic purposes.
Collapse
|
4
|
Yan H, Jiang M, Yang F, Tang X, Lin M, Zhou C, Tan Y, Liu D. Ajuforrestin A, an Abietane Diterpenoid from Ajuga ovalifolia var. calanthe, Induces A549 Cell Apoptosis by Targeting SHP2. Molecules 2022; 27:molecules27175469. [PMID: 36080236 PMCID: PMC9457730 DOI: 10.3390/molecules27175469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The Src-homology 2 domain-containing phosphatase 2 (SHP2), which is encoded by PTPN11, participates in many cellular signaling pathways and is closely related to various tumorigenesis. Inhibition of the abnormal activity of SHP2 by small molecules is an important part of cancer treatment. Here, three abietane diterpenoids, named compounds 1–3, were isolated from Ajuga ovalifolia var. calantha. Spectroscopic analysis was used to identify the exact structure of the compounds. The enzymatic kinetic experiment and the cellular thermal shift assay showed compound 2 selectively inhibited SHP2 activity in vitro. Molecular docking indicated compound 2 targeted the SHP2 catalytic domain. The predicted pharmacokinetic properties by SwissADME revealed that compound 2 passed the majority of the parameters of common drug discovery rules. Compound 2 restrained A549 proliferation (IC50 = 8.68 ± 0.96 μM), invasion and caused A549 cell apoptosis by inhibiting the SHP2–ERK/AKT signaling pathway. Finally, compound 2 (Ajuforrestin A) is a potent and efficacious SHP2 inhibitor and may be a promising compound for human lung epithelial cancer treatment.
Collapse
Affiliation(s)
- Hongling Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Miao Jiang
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fujin Yang
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Xueyong Tang
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Mao Lin
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Chunyan Zhou
- General Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
- Correspondence: (C.Z.); (Y.T.); (D.L.)
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.Z.); (Y.T.); (D.L.)
| | - Deming Liu
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Correspondence: (C.Z.); (Y.T.); (D.L.)
| |
Collapse
|