1
|
Yang H, Cao J, Li JM, Li C, Zhou WW, Luo JW. Exploration of the molecular mechanism of tea polyphenols against pulmonary hypertension by integrative approach of network pharmacology, molecular docking, and experimental verification. Mol Divers 2024; 28:2603-2616. [PMID: 37486473 DOI: 10.1007/s11030-023-10700-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Pulmonary hypertension, a common complication of chronic obstructive pulmonary disease, is a major global health concern. Green tea is a popular beverage that is consumed all over the world. Green tea's active ingredients are epicatechin derivatives, also known as "polyphenols," which have anti-carcinogenic, anti-inflammatory, and antioxidant properties. This study aimed to explore the possible mechanism of green tea polyphenols in the treatment of pulmonary hypertension using network pharmacology, molecular docking, and experimental verification. A total of 316 potential green tea polyphenols-related targets were obtained from the PharmMapper, SwissTargetPrediction, and TargetNet databases. A total of 410 pulmonary hypertension-related targets were predicted by the CTD, DisGeNET, pharmkb, and GeneCards databases. Green tea polyphenols-related targets were hit by the 49 targets associated with pulmonary hypertension. AKT1 and HIF1-α were identified through the FDA drugs-target network and PPI network combined with GO functional annotation and KEGG pathway enrichment. Molecular docking results showed that green tea polyphenols had strong binding abilities to AKT1 and HIF1-α. In vitro experiments showed that green tea polyphenols inhibited the proliferation and migration of hypoxia stimulated pulmonary artery smooth muscle cells by decreasing AKT1 phosphorylation and downregulating HIF1α expression. Collectively, green tea polyphenols are promising phytochemicals against pulmonary hypertension.
Collapse
Affiliation(s)
- Huan Yang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jun Cao
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jian-Min Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Cheng Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Wen-Wu Zhou
- Department of Cardiovascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jin-Wen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, Hunan, China.
| |
Collapse
|
2
|
Lin C, Yang H, Luo Q, Liu Q. FAK mediates hypoxia-induced pulmonary artery smooth muscle cell proliferation by modulating mitochondrial transcription termination factor 1/cyclin D1. Clin Transl Sci 2024; 17:e13767. [PMID: 38488492 PMCID: PMC10941516 DOI: 10.1111/cts.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
This study aimed to investigate the mechanism of FAK-dependent hypoxia-induced proliferation on human pulmonary artery smooth muscle cells (HPASMCs). Primary HPASMCs were isolated and cultured in vitro under normal and hypoxia conditions to assess cell proliferation with cell counting kit-8. FAK and mitochondrial transcription termination factor 1 (mTERF1) were silenced with siRNA, mRNA, and protein levels of FAK, mTERF1, and cyclin D1 were determined. HPASMC proliferation increased under hypoxia compared to normal conditions. Knocking down FAK or mTERF1 with siRNA led to decreased cell proliferation under both normal and hypoxia conditions. FAK knockdown led to the reduction of both mTERF1 and cyclin D1 expressions under the hypoxia conditions, whereas mTERF1 knockdown led to the downregulation of cyclin D1 expression but not FAK expression under the same condition. However, under normal conditions, knocking down either FAK or mTERF1 had no impact on cyclin D1 expression. These results suggested that FAK may regulate the mTERF1/cyclin D1 signaling pathway to modulate cell proliferation in hypoxia.
Collapse
Affiliation(s)
- Chunlong Lin
- Department of Respiratory and Critical Care MedicineYueyang People's Hospital of Hunan Normal UniversityYueyangChina
| | - Hui Yang
- Department of Respiratory and Critical Care MedicineYueyang People's Hospital of Hunan Normal UniversityYueyangChina
| | - Qiong Luo
- Department of Respiratory and Critical Care MedicineYueyang People's Hospital of Hunan Normal UniversityYueyangChina
| | - Qi Liu
- Department of Respiratory and Critical Care MedicineYueyang People's Hospital of Hunan Normal UniversityYueyangChina
| |
Collapse
|
3
|
Li Y, Wu Y, Qin X, Gu J, Liu A, Cao J. Constructing a competitive endogenous RNA network of EndMT-related atherosclerosis through weighted gene co-expression network analysis. Front Cardiovasc Med 2024; 10:1322252. [PMID: 38268851 PMCID: PMC10806165 DOI: 10.3389/fcvm.2023.1322252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction and plaque formation. Under pro-inflammatory conditions, endothelial cells can undergo endothelial-to-mesenchymal transition (EndMT), contributing to atherosclerosis development. However, the specific regulatory mechanisms by which EndMT contributes to atherosclerosis remain unclear and require further investigation. Dan-Shen-Yin (DSY), a traditional Chinese herbal formula, is commonly used for cardiovascular diseases, but its molecular mechanisms remain elusive. Emerging evidence indicates that competing endogenous RNA (ceRNA) networks play critical roles in atherosclerosis pathogenesis. In this study, we constructed an EndMT-associated ceRNA network during atherosclerosis progression by integrating gene expression profiles from the Gene Expression Omnibus (GEO) database and weighted gene co-expression network analysis. Functional enrichment analysis revealed this EndMT-related ceRNA network is predominantly involved in inflammatory responses. ROC curve analysis showed the identified hub genes can effectively distinguish between normal vasculature and atherosclerotic lesions. Furthermore, Kaplan-Meier analysis demonstrated that high expression of IL1B significantly predicts ischemic events in atherosclerosis. Molecular docking revealed most DSY bioactive components can bind key EndMT-related lncRNAs, including AC003092.1, MIR181A1HG, MIR155HG, WEE2-AS1, and MIR137HG, suggesting DSY may mitigate EndMT in atherosclerosis by modulating the ceRNA network.
Collapse
Affiliation(s)
- Yawei Li
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yubiao Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiude Qin
- Encephalopathy Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinchao Gu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijun Liu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui Cao
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Wang HJ, Ma L, Yu Q. Cited2 inhibited hypoxia-induced proliferation and migration of PASMCs via the TGF-β1/Cited2/PPARγ pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:509-517. [PMID: 38419888 PMCID: PMC10897560 DOI: 10.22038/ijbms.2023.74455.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/08/2023] [Indexed: 03/02/2024]
Abstract
Objectives Proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) contribute to hypoxia-induced pulmonary hypertension (HPH). The transcription factor Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (Cited2) has been implicated in the control of tumor cells and mesenchymal stem cell (MSC) and cardiomyocyte growth or migration. Whether Cited2 is involved in the proliferation and migration of PASMCs and the underlying mechanisms deserve to be explored. Materials and Methods Cited2 expression was detected in rat PASMCs under hypoxia conditions and HPH rat models. The effect of Cited2 on the proliferation and migration of PASMC was detected by overexpression or knockdown of the Cited2 gene. After PAMSCs were treated with recombinant TGF-β1 and the lentivirus vector overexpressing Cited2, expression of peroxisome proliferator-activated receptor gamma (PPARγ) was examined by western blotting. Results We revealed that hypoxia down-regulated the expression of Cited2 in PASMCs and rat pulmonary arteries. Cited2 overexpression inhibited the proliferation and migration of PASMCs under hypoxia, while Cited2 knockdown induced the proliferation and migration of PASMCs. Cited2 inhibits the negative regulation of the TGF-β1 pathway on PPARγ to inhibit the proliferation and migration of PASMCs. Conclusion These findings suggest that increased Cited2 expression contributes to the inhibition of PASMCs proliferation and migration by regulating TGF-β1-mediated target gene expression in HPH and provides a new target for molecular therapy of HPH.
Collapse
Affiliation(s)
- Hong-Juan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, China
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China
| | - Lan Ma
- Department of Plateau Medical Center, Qinghai University, Xining 810000, Qinghai, China
| | - Qin Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, China
- Department of Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
5
|
Yu J, Huang S, Shen W, Zhang Z, Ye S, Chen Y, Yang Y, Bian T, Wu Y. Expression Profiles of circRNAs and Identification of hsa_circ_0007608 and hsa_circ_0064656 as Potential Biomarkers for COPD-PH Patients. Int J Chron Obstruct Pulmon Dis 2023; 18:2457-2471. [PMID: 37955024 PMCID: PMC10638933 DOI: 10.2147/copd.s424712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Pulmonary hypertension (PH) is a common complication of chronic obstructive pulmonary disease (COPD), which can worsen the prognosis and increase the mortality of COPD patients. Circular RNA (circRNA) has been discovered to participate in the occurrence and progression of PH in COPD and may have significant prospects for advanced diagnostics and prognosis evaluation. However, the expression profile of circRNAs in human lung tissues with definite diagnosis of COPD-PH remains to be further explored and validated. Methods Twelve human lung tissue samples (6 each from COPD-PH and control groups) were collected and subjected to high-throughput sequencing. QRT-PCR was performed to validate the differential expression levels of the top 10 dysregulated circRNAs in patients' plasma samples, HPAECs and HPASMCs. Functional and pathway enrichment analysis on target genes was performed to explore the potential functions and pathways of those circRNAs. Hub genes obtained after conducting bioinformatics analysis on the predicted target mRNAs were verified by qRT-PCR in HPAECs and HPASMCs, and then we selected VCAN as a potential key gene involved in the pathogenesis of COPD-PH for immunohistochemistry validation in lung tissue. Results A total of 136 circRNAs (39 up-regulated and 97 down-regulated) were differentially expressed between the two groups. Following qRT-PCR validation, two circRNAs (hsa_circ_0007608 and hsa_circ_0064656) were believed to be involved in the pathogenesis. GO and KEGG pathway analysis suggested that these two DECs were mainly related to the celluar proliferation, migration and EndMT. PPI network revealed 11 pairs of key mRNAs. VCAM1, VCAN and THBS1, three hub mRNAs with the highest reliability among all, were validated and proven to be up-regulated in COPD-PH. We innovatively found that VCAN may be involved in COPD-PH. Conclusion This study identified the functional circRNAs, providing insights into the molecular mechanisms and predictions of COPD-PH, and may provide potential diagnostic biomarkers or therapeutic targets for COPD-PH.
Collapse
Affiliation(s)
- Jinyan Yu
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Shulun Huang
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Weiyu Shen
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Zheming Zhang
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Shugao Ye
- Transplant Centre, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Yuan Chen
- Transplant Centre, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Yue Yang
- Department of Respiratory Medicine, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Tao Bian
- Department of Respiratory Medicine, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Yan Wu
- Department of Respiratory Medicine, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| |
Collapse
|
6
|
Zhao SS, Liu J, Wu QC, Zhou XL. Role of histone lactylation interference RNA m 6A modification and immune microenvironment homeostasis in pulmonary arterial hypertension. Front Cell Dev Biol 2023; 11:1268646. [PMID: 37771377 PMCID: PMC10522917 DOI: 10.3389/fcell.2023.1268646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease resulting from progressive increases in pulmonary vascular resistance and pulmonary vascular remodeling, ultimately leading to right ventricular failure and even death. Hypoxia, inflammation, immune reactions, and epigenetic modifications all play significant contributory roles in the mechanism of PAH. Increasingly, epigenetic changes and their modifying factors involved in reprogramming through regulation of methylation or the immune microenvironment have been identified. Among them, histone lactylation is a new post-translational modification (PTM), which provides a novel visual angle on the functional mechanism of lactate and provides a promising diagnosis and treatment method for PAH. This review detailed introduces the function of lactate as an important molecule in PAH, and the effects of lactylation on N6-methyladenosine (m6A) and immune cells. It provides a new perspective to further explore the development of lactate regulation of pulmonary hypertension through histone lactylation modification.
Collapse
Affiliation(s)
- Shuai-shuai Zhao
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Qi-cai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xue-liang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Li P, Ou Y, Zhang Z, Wang W, Ji X, Fang M, Li Q. Rapid separation and binding configuration prediction of the components in Danshen decoction to endothelin A receptor using affinity chromatography and molecular dynamics simulation. J Sep Sci 2023; 46:e2200944. [PMID: 36820791 DOI: 10.1002/jssc.202200944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
As a famous traditional Chinese formula, Danshen Decoction has the potential to relieve the pain of pulmonary arterial hypertension patients, however, the functional components remain unknown. Herein, we reported a method to screen the functional components in Danshen Decoction targeting endothelin receptor A, an accepted target for the treatment of the disease. The receptor was functionalized on the macroporous silica gel through an epidermal growth factor receptor fusion tag and its covalent inhibitor. Using the affinity gel as the stationary phase, the bioactive compound was identified as salvianolic acid B by mass spectrometry. The binding kinetic parameter (dissociation rate constants kd ) of salvianolic acid B with the receptor was determined via peak profiling. Using the specific ligands of the receptor as probes, the binding configuration prediction of salvianolic acid B with the receptor was performed by molecular dynamics simulation. Our results indicated that salvianolic acid B is a potential bioactive compound in Danshen Decoction targeting the receptor. This work showed that receptor chromatography in combination with molecular dynamics simulation is applicable to predicting the binding kinetics and configuration of a ligand to a receptor, providing crucial insight for the rational design of drugs that recognize functional proteins.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Yuanyuan Ou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Zilong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Wenwen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Xu Ji
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, P. R. China
| | - Minfeng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, P. R. China
| |
Collapse
|
8
|
Liu X, Zhang H, Yan J, Li X, Li J, Hu J, Shang X, Yang H. Deciphering the Efficacy and Mechanism of Astragalus membranaceus on High Altitude Polycythemia by Integrating Network Pharmacology and In Vivo Experiments. Nutrients 2022; 14:4968. [PMID: 36500998 PMCID: PMC9740273 DOI: 10.3390/nu14234968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Hypoxic exposure makes plateau migrators susceptible to high altitude polycythemia (HAPC). Astragalus membranaceus (AM) is an edible and medicinal plant with remarkable immunomodulatory activities. The purpose of this study was to discover if AM could be a candidate for the prevention of HAPC and its mechanism. Here, network pharmacology was applied to screen active compounds, key targets, and enriched pathways of AM in the treatment of HAPC. Molecular docking evaluated the affinity between compounds and core targets. Subsequently, the mechanisms of AM were further verified using the hypoxia exposure-induced mice model of HAPC. The network pharmacology analysis and molecular docking results identified 14 core targets of AM on HAPC, which were predominantly mainly enriched in the HIF-1 pathway. In the HAPC animal models, we found that AM inhibited the differentiation of hematopoietic stem cells into the erythroid lineage. It also suppressed the production of erythrocytes and hemoglobin in peripheral blood by reducing the expression of HIF-1α, EPO, VEGFA, and Gata-1 mRNA. Furthermore, AM downregulated the expression of IL-6, TNF-α, and IFN-γ mRNA, thereby alleviating organ inflammation. In conclusion, AM supplementation alleviates hypoxia-induced HAPC in mice, and TNF-α, AKT1, HIF-1α, VEGFA, IL-6, and IL-1B may be the key targets.
Collapse
Affiliation(s)
- Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hao Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jinxiao Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiang Li
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jie Li
- General Station for Drug & Instrument Supervision and Control, Joint Logistics Support Force, PLA, Dalian 116041, China
| | - Jialu Hu
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
9
|
Ma Q, Zhang AN, Zhang CX. Exploration of the Pharmacological Mechanism of Bufei Nashen Pill in Treating Chronic Obstructive Pulmonary Disease Using Network Pharmacology Integrated Molecular Docking. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221134883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Based on network pharmacological analysis and molecular docking verification, the therapeutic mechanism of Bufei Nashen Pill (BFNSP) in treating chronic obstructive pulmonary disease (COPD) is discussed. Methods: First, the active ingredients and therapeutic targets of BFNSP were determined based on literature and the Chinese medicine system pharmacology database. Relevant targets of COPD were determined using GeneCard, Therapeutic Target Database and Online Mendelian Inheritance in Man (OMIM). The con-targets of BFNSP and COPD were then obtained through the Veen platform, which were implemented in Cytoscape to build “Drug-Ingredients-Potential Target network.” Target gene function enrichment analysis and signal pathway analysis were performed based on STRING database, Database for Annotation, Visualization, and Integrated Discovery, and Kyoto Encyclopedia of Genes and Genomes Pathway database. Finally, SYBYL 2.2.1 software was used to finish docking. Results: In the Drug-Ingredients-Potential Targets network, 172 active ingredients and 183 potential targets were found. Enrichment analysis showed that potential targets mainly involve biological functions such as inflammation, reactive oxygen, and immunity. Molecular docking showed that the active ingredients of BFNSP had preferential interaction with interleukin 6, mitogen-activated protein kinase 1, SRC, epidermal growth factor receptor, and matrix metalloproteinase-9. Conclusion: BFNSP can be used to treat COPD by the regulation of inflammation, immunity, and hypoxia tolerance.
Collapse
Affiliation(s)
- Qin Ma
- Ningxia Medical University, Yinchuan, China
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| | - An-ni Zhang
- School of Medicine, Jinan University, Guangzhou, China
| | - Chang-xi Zhang
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| |
Collapse
|