1
|
Fan K, Hua X, Wang S, Efferth T, Tan S, Wang Z. A promising fusion: Traditional Chinese medicine and probiotics in the quest to overcome osteoporosis. FASEB J 2025; 39:e70428. [PMID: 40047492 DOI: 10.1096/fj.202403209r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025]
Abstract
Botanical drugs and probiotic supplements present safer alternative options for the prevention and treatment of osteoporosis (OP). However, pathological disorders of the gut microbiota and the specific properties of probiotics and traditional Chinese medicine (TCM) significantly limit their therapeutic efficacy. Given the favorable synergistic and complementary effects between probiotics and herbal medicines, a creative combination of these approaches may address the issue of their current limited efficacy. A comprehensive analysis is necessary to provide a detailed review of their potential for combination, the mechanisms behind their synergy, scientific applications, and future developments. There exists a complex relationship between gut microbiota and OP, and the underlying regulatory mechanisms are multidimensional, involving the production of pro-inflammatory metabolites, immune system disruption, and the impairment of the intestinal mucosal barrier. Furthermore, we analyzed the complex mechanisms and potential connections between probiotics, TCM, and their combined applications. We highlighted the principle of complementary gain and the substantial therapeutic potential of their organic combination, which facilitates the release of active substances in TCM, increases the bioavailability of TCM, enhances probiotic delivery efficiency, and exerts synergistic effects. The combined use of probiotics and TCM offers a safe and effective strategy for managing OP and presents an innovative and promising direction for the future development of modern phytomedicine.
Collapse
Affiliation(s)
- Kangcheng Fan
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin Hua
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shuwan Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Shengnan Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
2
|
Zhang D, Zhu Z, He Z, Duan S, Yi Q, Qiu M, Dai X, Su G, Li K, Xu L, Liu D, Wu Y, Gao Y, Li R, Guo S. Kuiyangling Enema Alleviates Ulcerative Colitis Mice by Reducing Levels of Intestinal NETs and Promoting HuR/VDR Signaling. J Inflamm Res 2025; 18:381-403. [PMID: 39802513 PMCID: PMC11725280 DOI: 10.2147/jir.s492818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Kuiyangling is a traditional Chinese medicine formula used for the treatment of ulcerative colitis, but the specific mechanism remains unclear. Imbalance in NETs regulation is one of the important factors contributing to the onset of ulcerative colitis (UC). The HuR/VDR signaling pathway plays a significant role in restoring the intestinal mucosal barrier in UC. The aim of this study is to explore the mechanism of Kuiyangling in the treatment of ulcerative colitis. Methods A mouse model of ulcerative colitis using 3% DSS water was considered, and model, normal, Kuiyangling medium- (5 g·kg-1) and high-dose (10 g·kg-1), and mesalazine (50 mg·kg-1) groups were created. Measurements of colon length, spleen index, histopathological variances, subcellular structure observations, ROS content, and NET-related proteins (PAD4, MPO, citH3) were obtained through HE staining, electron microscopy, live imaging, and Western blotting assays. Immunohistochemistry and immunofluorescence analyses were conducted to assess the levels of HuR/VDR protein complex, ZO-1, Occludin, Claudin-7, and intestinal NETs. An ELISA kit was utilized to determine cytokine levels, LC-MS was performed to analyze the composition of Kuiyangling, and next-generation sequencing was conducted for detection of the intestinal mucosal transcriptome. Results Kuiyangling reduced DAI, splenic index, and ROS content; maintained mucosal structure; decreased inflammation; and increased colon length and body mass index. Western blotting indicated that Kuiyangling reduced PAD4,MPO, and citH3 levels. Kuiyangling decreased NETs and increased the expression levels of ZO-1, Occludin, and Claudin-7, as well as up-regulating HuR, VDR, and HuR/VDR proteins. Kuiyangling reduced IL-1β, IL-6, and TNF-α levels while increasing TGF-β, IL-10, and IL-37 levels. Kuiyangling reduced inflammatory response proteins and elevated the levels of anti-inflammatory and intestinal barrier proteins, possibly inhibiting the TNF and oxidative phosphorylation signaling pathways. Conclusion Kuiyangling enema in treating ulcerative colitis in mice, associated with a reduction in intestinal NETs and enhancement of HuR-mediated intestinal barrier signaling pathways.
Collapse
Affiliation(s)
- Dong Zhang
- Gastroenterology Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518000, People’s Republic of China
- Gastroenterology Department, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province, 518000, People’s Republic of China
| | - Zeming Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Zhangyou He
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Siwei Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Qincheng Yi
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Min Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Xingzhen Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Guang Su
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Kexin Li
- Gastroenterology Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518000, People’s Republic of China
- Gastroenterology Department, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province, 518000, People’s Republic of China
| | - Lin Xu
- Gastroenterology Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518000, People’s Republic of China
- Gastroenterology Department, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province, 518000, People’s Republic of China
| | - Donghou Liu
- Gastroenterology Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518000, People’s Republic of China
- Gastroenterology Department, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province, 518000, People’s Republic of China
| | - Yabin Wu
- Gastroenterology Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518000, People’s Republic of China
- Gastroenterology Department, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province, 518000, People’s Republic of China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Ruliu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Shaoju Guo
- Gastroenterology Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518000, People’s Republic of China
- Gastroenterology Department, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province, 518000, People’s Republic of China
| |
Collapse
|
3
|
Zhou M, Chen Y, Jin W, Li P, Hu J, Guo X. Traditional Chinese Medicine: A Promising Treatment Option for Intestinal Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2107-2129. [PMID: 39581857 DOI: 10.1142/s0192415x24500812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Intestinal fibrosis, a common complication of inflammatory bowel disease, in particular in Crohn's disease, arises from chronic inflammation, leading to intestinal narrowing, structural damage, and functional impairment that significantly impact patients' quality of life. Current treatment options for intestinal fibrosis are limited, with surgery being the primary intervention. Traditional Chinese Medicine (TCM) has emerged as a promising approach in preventing and treating intestinal fibrosis. However, there is a scarcity of literature summarizing the mechanisms underlying TCM's efficacy in this context. To address this gap, we conducted a comprehensive review, uncovering multiple mechanisms through which TCM mitigates intestinal fibrosis. These mechanisms include immune cell balance regulation, suppression of inflammatory responses, reduction of inflammatory mediators, alleviation of colon tissue damage, restoration of intestinal function, modulation of growth factors to inhibit fibroblast activation, dynamic regulation of TIMPs and MMPs to reduce extracellular matrix deposition, inhibition of epithelial-mesenchymal transition and endothelial-mesenchymal transition, autophagy modulation, maintenance of the intestinal mucosal barrier, prevention of tissue damage by harmful factors, and regulation of cell proliferation and apoptosis. This study aims to bridge existing knowledge gaps by presenting recent evidence supporting the utilization of TCM in both clinical and experimental research settings.
Collapse
Affiliation(s)
- Meng'en Zhou
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yan Chen
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wenqi Jin
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Peng Li
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jie Hu
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiutian Guo
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
4
|
Zong Y, Meng J, Mao T, Han Q, Zhang P, Shi L. Repairing the intestinal mucosal barrier of traditional Chinese medicine for ulcerative colitis: a review. Front Pharmacol 2023; 14:1273407. [PMID: 37942490 PMCID: PMC10628444 DOI: 10.3389/fphar.2023.1273407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Damage to the intestinal mucosal barrier play an important role in the pathogenesis of ulcerative colitis (UC). Discovering the key regulators and repairing the disturbed barrier are crucial for preventing and treating UC. Traditional Chinese medicine (TCM) has been proved to be effective on treating UC and has exhibited its role in repairing the intestinal mucosal barrier. We summarized the evidence of TCM against UC by protecting and repairing the physical barrier, chemical barrier, immune barrier, and biological barrier. Mechanisms of increasing intestinal epithelial cells, tight junction proteins, and mucins, promoting intestinal stem cell proliferation, restoring the abundance of the intestinal microbiota, and modulating the innate and adaptive immunity in gut, were all involved in. Some upstream proteins and signaling pathways have been elucidated. Based on the existing problems, we suggested future studies paying attention to patients' samples and animal models of UC and TCM syndromes, conducting rescue experiments, exploring more upstream regulators, and adopting new technical methods. We hope this review can provide a theoretical basis and novel ideas for clarifying the mechanisms of TCM against UC via repairing the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Yichen Zong
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Meng
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Tangyou Mao
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Qiang Han
- Department of Traditional Chinese Medicine, Health Service Center of Beiyuan Community, Beijing, China
| | - Peng Zhang
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Lei Shi
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| |
Collapse
|
5
|
Tian X, Wang P, Chen S, Zhang Y, Zhang X, Xu Q, Luo Y, Wu S, Wang A. Association of Normal Serum Uric Acid Level and Cardiovascular Disease in People Without Risk Factors for Cardiac Diseases in China. J Am Heart Assoc 2023; 12:e029633. [PMID: 37183869 DOI: 10.1161/jaha.123.029633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Background Healthy individuals with normal level of serum uric acid (SUA) may not be truly at the lowest risk of cardiovascular disease (CVD). This study aimed to assess the association of SUA levels with CVD and its subtypes in people without CVD risk factors and determine a suitable target of SUA to prevent CVD. Methods and Results We enrolled 25 284 participants who were free of CVD, absent of CVD risk factors, and with an SUA level between 180 and 359 μmol/L (3-6 mg/dL) at baseline from the Kailuan study. Cox proportional hazards models were applied to calculated adjusted hazard ratio (HR) and 95% CI for the risk of CVD and its subtypes. During a median follow-up of 12.97 years (interquartile range, 12.68-13.16 years), we identified 1007 cases of CVD. There was an increase in the risk of incident CVD with increasing SUA levels (Ptrend=0.0011). Compared with participants with SUA levels of 180 to 239 μmol/L (3-4 mg/dL), the HR of CVD was 1.12 (95% CI, 0.96-1.31) and 1.28 (95% CI, 1.08-1.52) for SUA levels of 240 to 299 μmol/L (4-5 mg/dL) and 300 to 359 μmol/L (5-6 mg/dL), respectively. A multivariable-adjusted spline regression model showed a J-shaped association between SUA and the risk of CVD. Similar results were observed for stroke and myocardial infarction. Conclusions The risk of incident CVD increased with elevating SUA levels among individuals without hyperuricemia or other traditional CVD risk factors. These findings highlighted the importance of primordial prevention for SUA level increase along with other traditional CVD risk factors.
Collapse
Affiliation(s)
- Xue Tian
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China
- Department of Epidemiology and Health Statistics, School of Public Health Capital Medical University Beijing China
- Beijing Municipal Key Laboratory of Clinical Epidemiology Beijing China
| | - Penglian Wang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Shuohua Chen
- Department of Cardiology, Kailuan Hospital North China University of Science and Technology Tangshan China
| | - Yijun Zhang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China
- Department of Epidemiology and Health Statistics, School of Public Health Capital Medical University Beijing China
- Beijing Municipal Key Laboratory of Clinical Epidemiology Beijing China
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Qin Xu
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Yanxia Luo
- Department of Epidemiology and Health Statistics, School of Public Health Capital Medical University Beijing China
- Beijing Municipal Key Laboratory of Clinical Epidemiology Beijing China
| | - Shouling Wu
- Department of Cardiology, Kailuan Hospital North China University of Science and Technology Tangshan China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China
| |
Collapse
|
6
|
Yang M, Zhang Q, Taha R, Abdelmotalab MI, Wen Q, Yuan Y, Zhao Y, Li Q, Liao C, Huang X, Jiang Z, Chu C, Jiao C, Sun L. Polysaccharide from Atractylodes macrocephala Koidz. ameliorates DSS-induced colitis in mice by regulating the Th17/Treg cell balance. Front Immunol 2022; 13:1021695. [PMID: 36341374 PMCID: PMC9630481 DOI: 10.3389/fimmu.2022.1021695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Atractylodes macrocephala Koidz. is one of the most frequently used traditional Chinese medicines for the treatment of ulcerative colitis (UC). The beneficial effect of polysaccharide from Atractylodes macrocephala Koidz. (PAMK) on UC has been reported, while the underlying mechanism and target remain unclear. In this study, we systematically investigated the therapeutic effect and the underlying mechanism of PAMK in UC based on a mouse model of dextran sodium sulfate (DSS)-induced colitis. PAMK treatment (100 mg/kg, 200 mg/kg and 400 mg/kg) significantly ameliorated DSS-induced colitis, manifested as a reduction in weight loss, disease activity index (DAI), colon shortening, spleen index and histological score. Moreover, PAMK treatment inhibited inflammation and improved the integrity of the intestinal barrier in colitis mice. Mechanistically, microarray analysis determined the critical role of the immunoregulatory effect of PAMK in alleviating UC. Flow cytometry analysis further demonstrated that PAMK treatment regulated the balance between T helper (Th) 17 and regulatory T (Treg) cells in the mesenteric lymph nodes (MLN) and spleen in mice with colitis. In addition, PAMK treatment downregulated the expression of IL-6 and suppressed the phosphorylation of STAT3. Together, these data revealed that PAMK treatment alleviated DSS-induced colitis by regulating the Th17/Treg cell balance, which may be dependent on the inhibition of the IL-6/STAT3 signaling pathway. Our study is the first to elucidate that the underlying mechanism by which PAMK treatment alleviates DSS-induced colitis is associated with an improved the Th17/Treg cell balance. Collectively, the study provides evidence for the potential of PAMK to treat UC.
Collapse
|
7
|
Wu Q, Chen Z, Ding Y, Tang Y, Cheng Y. Protective effect of traditional Chinese medicine on non-alcoholic fatty liver disease and liver cancer by targeting ferroptosis. Front Nutr 2022; 9:1033129. [PMID: 36330148 PMCID: PMC9623008 DOI: 10.3389/fnut.2022.1033129] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with high incidence and is closely related to metabolic syndrome. If not controlled, it may eventually become hepatocellular carcinoma (HCC). Ferroptosis, a non-apoptotic form of programmed cell death (PCD), is closely related to NAFLD and HCC, and the mechanisms of action involved are more complex. Some studies have demonstrated that many drugs inhibit ferroptosis and protect liver steatosis or carcinogenesis. The role of Traditional Chinese Medicine (TCM), especially herbs or herbal extracts, has received increasing attention. However, there are relatively few review articles on the regulation of NAFLD by TCM through ferroptosis pathway. Here, we summarize the TCM intervention mechanism and application affecting NAFLD/NAFLD-HCC via regulation of ferroptosis. This article focuses on the relationship between ferroptosis and NAFLD or NAFLD-HCC and the protective effect of TCM on both by targeting ferroptosis. It not only summarizes the mechanism of early prevention and treatment of NAFLD, but also provides reference ideas for the development of TCM for the treatment of metabolic diseases and liver diseases.
Collapse
Affiliation(s)
- Qiongbo Wu
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Zihao Chen
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Yi Ding
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
| | - Yunting Tang
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
| | - Yawei Cheng
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- *Correspondence: Yawei Cheng,
| |
Collapse
|
8
|
Yang S, Hao S, Wang Q, Lou Y, Jia L, Chen D. The interactions between traditional Chinese medicine and gut microbiota: Global research status and trends. Front Cell Infect Microbiol 2022; 12:1005730. [PMID: 36171760 PMCID: PMC9510645 DOI: 10.3389/fcimb.2022.1005730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background There is a crosstalk between traditional Chinese medicine (TCM) and gut microbiota (GM), many articles have studied and discussed the relationship between the two. The purpose of this study is to use bibliometric analysis to explore the research status and development trends of the TCM/GM research, identify and analyze the highly cited papers relating to the TCM/GM. Methods A literature search regarding TCM/GM publications from 2004 to 2021 was undertaken on August 13, 2022. The main information (full record and cited references) of publications was extracted from the Science Citation Index Expanded (SCI-E) of Web of Science Core Collection (WoSCC). The Bibliometrix of R package, CiteSpace and VOSviewer were used for bibliometric analysis. Results A total of 830 papers were included. The publication years of papers were from 2004 to 2021. The number of papers had increased rapidly since 2018. China had the most publications and made most contributions to this field. Nanjing University of Chinese Medicine and Beijing University of Chinese Medicine were in the leading productive position in TCM/GM research, Chinese Academy of Chinese Medical Sciences had the highest total citations (TC). Duan Jin-ao from Nanjing University of Chinese Medicine had the largest number of publications, and Tong Xiao-lin from China Academy of Chinese Medical Sciences had the most TC. The Journal of Ethnopharmacology had the most published papers and the most TC. The main themes in TCM/GM included the role of GM in TCM treatment of glucolipid metabolism diseases and lower gastrointestinal diseases; the mechanism of interactions between GM and TCM to treat diseases; the links between TCM/GM and metabolism; and the relationship between GM and oral bioavailability of TCM. Conclusion This study gained insight into the research status, hotspots and trends of global TCM/GM research, identified the most cited articles in TCM/GM and analyzed their characteristics, which may inform clinical researchers and practitioners’ future directions.
Collapse
Affiliation(s)
- Shanshan Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shaodong Hao
- Sixth Clinical School of Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanni Lou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Liqun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Dongmei Chen,
| | - Dongmei Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Dongmei Chen,
| |
Collapse
|
9
|
Rudiansyah M, Abdalkareem Jasim S, S Azizov B, Samusenkov V, Kamal Abdelbasset W, Yasin G, Mohammad HJ, Jawad MA, Mahmudiono T, Hosseini-Fard SR, Mirzaei R, Karampoor S. The emerging microbiome-based approaches to IBD therapy: From SCFAs to urolithin A. J Dig Dis 2022; 23:412-434. [PMID: 36178158 DOI: 10.1111/1751-2980.13131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic gastrointestinal inflammatory conditions which can be life-threatening, affecting both children and adults. Crohn's disease and ulcerative colitis are the two main forms of IBD. The pathogenesis of IBD is complex and involves genetic background, environmental factors, alteration in gut microbiota, aberrant immune responses (innate and adaptive), and their interactions, all of which provide clues to the identification of innovative diagnostic or prognostic biomarkers and the development of novel treatments. Gut microbiota provide significant benefits to its host, most notably via maintaining immunological homeostasis. Furthermore, changes in gut microbial populations may promote immunological dysregulation, resulting in autoimmune diseases, including IBD. Investigating the interaction between gut microbiota and immune system of the host may lead to a better understanding of the pathophysiology of IBD as well as the development of innovative immune- or microbe-based therapeutics. In this review we summarized the most recent findings on innovative therapeutics for IBD, including microbiome-based therapies such as fecal microbiota transplantation, probiotics, live biotherapeutic products, short-chain fatty acids, bile acids, and urolithin A.
Collapse
Affiliation(s)
- Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat, Ulin Hospital, Banjarmasin, Indonesia
| | - Saade Abdalkareem Jasim
- Al-Maarif University College Medical Laboratory Techniques Department Al-Anbar-Ramadi, Ramadi, Iraq
| | - Bakhadir S Azizov
- Department of Therapeutic Disciplines No.1, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ghulam Yasin
- Department of Botany University of Bahauddin Zakariya University, Multan, Pakistan
| | | | | | - Trias Mahmudiono
- Department of Nutrition Faculty of Public Health Universitas, Airlangga, Indonesia
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|