1
|
Li L, Zhao S, Leng Z, Chen S, Shi Y, Shi L, Li J, Mao K, Tang H, Meng B, Wang Y, Shang G, Liu H. Pathological mechanisms and related markers of steroid-induced osteonecrosis of the femoral head. Ann Med 2024; 56:2416070. [PMID: 39529511 PMCID: PMC11559024 DOI: 10.1080/07853890.2024.2416070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic disease with a high disability rate. Long-term administration of steroids is the most common pathogenic factor for non-traumatic ONFH. Early diagnosis of steroid-induced osteonecrosis of the femoral head (SONFH) is difficult and mainly depends on imaging. OBJECTIVES The objectives of this review were to examine the pathological mechanisms of SONFH, summarize related markers of SONFH, and identify areas for future studies. METHODS We reviewed studies on pathological mechanisms and related markers of SONFH and discussed the relationship between them, as well as clinical applications and the outlook of potential markers. RESULTS The pathological mechanisms of SONFH included decreased osteogenesis, lipid accumulation, increased intraosseous pressure, and microcirculation disruption. Differential proteomics and genomics play crucial roles in the occurrence, progression, and outcome of SONFH, providing novel insights into SONFH. Additionally, the biological functions of mesenchymal stem cells (MSCs) and exosomes (Exos) in SONFH have attracted increasing attention. CONCLUSIONS The pathological mechanisms of SONFH are complex. The related markers mentioned in the current review can predict the occurrence and progression of SONFH, which will help provide effective early clinical prevention and treatment strategies for SONFH.
Collapse
Affiliation(s)
- Longyu Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shangkun Zhao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zikuan Leng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifang Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keya Mao
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, China
| | - Hai Tang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Meng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yisheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Yang H, Nie S, Zhou C, Li M, Yu Q, Mo Y, Wei Y, Wang X. Palliative effect of rotating magnetic field on glucocorticoid-induced osteonecrosis of the femoral head in rats by regulating osteoblast differentiation. Biochem Biophys Res Commun 2024; 725:150265. [PMID: 38901225 DOI: 10.1016/j.bbrc.2024.150265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
With the substantial increase in the overuse of glucocorticoids (GCs) in clinical medicine, the prevalence of glucocorticoid-induced osteonecrosis of the femoral head (GC-ONFH) continues to rise in recent years. However, the optimal treatment for GC-ONFH remains elusive. Rotating magnetic field (RMF), considered as a non-invasive, safe and effective approach, has been proved to have multiple beneficial biological effects including improving bone diseases. To verify the effects of RMF on GC-ONFH, a lipopolysaccharide (LPS) and methylprednisolone (MPS)-induced invivo rat model, and an MPS-induced invitro cell model have been employed. The results demonstrate that RMF alleviated bone mineral loss and femoral head collapse in GC-ONFH rats. Meanwhile, RMF reduced serum lipid levels, attenuated cystic lesions, raised the expression of anti-apoptotic proteins and osteoprotegerin (OPG), while suppressed the expression of pro-apoptotic proteins and nuclear factor receptor activator-κB (RANK) in GC-ONFH rats. Besides, RMF also facilitated the generation of ALP, attenuated apoptosis and inhibits the expression of pro-apoptotic proteins, facilitated the expression of OPG, and inhibited the expression of RANK in MPS-stimulated MC3T3-E1 cells. Thus, this study indicates that RMF can improve GC-ONFH in rat and cell models, suggesting that RMF have the potential in the treatment of clinical GC-ONFH.
Collapse
Affiliation(s)
- Hua Yang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Shenglan Nie
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Cai Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Mengqing Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Qinyao Yu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yaxian Mo
- Songgang People's Hospital, Shenzhen, Guangdong, 518105, China
| | - Yunpeng Wei
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
3
|
Yue C, Ma M, Guo J, Li H, Yang Y, Liu Y, Xu B. Altered gut microbe metabolites in patients with alcohol‑induced osteonecrosis of the femoral head: An integrated omics analysis. Exp Ther Med 2024; 28:311. [PMID: 38873043 PMCID: PMC11170330 DOI: 10.3892/etm.2024.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/19/2024] [Indexed: 06/15/2024] Open
Abstract
Excessive alcohol consumption is considered to be a major risk factor of alcohol-induced osteonecrosis of the femoral head (AONFH). The gut microbiota (GM) has been reported to aid in the regulation of human physiology and its composition can be altered by alcohol consumption. The aim of the present study was to improve the understanding of the GM and its metabolites in patients with AONFH. Metabolomic sequencing and 16S rDNA analysis of fecal samples were performed using liquid chromatography-mass spectrometry to characterize the GM of patients with AONFH and healthy normal controls (NCs). Metagenomic sequencing of fecal samples was performed to identify whether GM changes on the species level were associated with the expression of gut bacteria genes or their associated functions in patients with AONFH. The abundance of 58 genera was found to differ between the NC group and the AONFH group. Specifically, Klebsiella, Holdemanella, Citrobacter and Lentilactobacillus were significantly more abundant in the AONFH group compared with those in the NC group. Metagenomic sequencing demonstrated that the majority of the bacterial species that exhibited significantly different abundance in patients with AONFH belonged to the genus Pseudomonas. Fecal metabolomic analysis demonstrated that several metabolites were present at significantly different concentrations in the AONFH group compared with those in the NC group. These metabolites were products of vitamin B6 metabolism, retinol metabolism, pentose and glucuronate interconversions and glycerophospholipid metabolism. In addition, these changes in metabolite levels were observed to be associated with the altered abundance of specific bacterial species, such as Basidiobolus, Mortierella, Phanerochaete and Ceratobasidium. According to the results of the present study, a comprehensive landscape of the GM and metabolites in patients with AONFH was revealed, suggesting the existence of interplay between the gut microbiome and metabolome in AONFH pathogenesis.
Collapse
Affiliation(s)
- Chen Yue
- Evidence Based Medicine Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Maoxiao Ma
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Jiayi Guo
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Hongjun Li
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Yuxia Yang
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Youwen Liu
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Bin Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
4
|
Chen D, Zhong D, Mei R, Qian S, Wang P, Chen K, Yu X. Screening and identification of potential key biomarkers for glucocorticoid-induced osteonecrosis of the femoral head. J Orthop Surg Res 2023; 18:28. [PMID: 36631868 PMCID: PMC9832261 DOI: 10.1186/s13018-022-03465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common disease in osteoarticular surgery, with a high disability rate, which brings great physical and mental pain and economic burden to patients. Its specific pathogenesis has not been fully demonstrated, and there is a lack of recognized effective biomarkers for earlier detection and prompt treatment. This has become an urgent clinical problem for orthopedic scholars. MATERIALS AND METHODS We downloaded the gene expression profile dataset GSE123568 from the Gene Expression Omnibus database, used STRING and Cytoscape to carry out module analysis and built a gene interaction network. The four core genes most related to GIONFH in this network were ultimately found out by precise analysis and animal experiment were then conducted for verification. In this verification process, thirty-six New Zealand white rabbits were randomly divided into blank control group, model group and drug group. Except for the blank control group, the animal model of GIONFH was established by lipopolysaccharide and methylprednisolone, while the drug group was given the lipid-lowering drugs for intervention as planned. The rabbits were taken for magnetic resonance imaging at different stages, and their femoral head specimens were taken for pathological examination, then the expression of target genes in the femoral head specimens of corresponding groups was detected. Validation methods included RT-PCR and pathological examination. RESULTS A total of 679 differential genes were selected at first, including 276 up-regulated genes and 403 down-regulated genes. Finally, four genes with the highest degree of correlation were screened. Animal experiment results showed that ASXL1 and BNIP3L were in low expression, while FCGR2A and TYROBP were highly expressed. CONCLUSION Through animal experiments, it was confirmed that ASXL1, BNIP3L, FCGR2A and TYROBP screened from the comparative analysis of multiple genes in the database were closely related to GIONFH, which is important for early diagnosis of Glucocorticoid-induced osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Dan Chen
- grid.260463.50000 0001 2182 8825Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Duming Zhong
- grid.260463.50000 0001 2182 8825Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China ,grid.507988.bDepartment of Orthopaedics, Xiang Yang No.1 People’s Hospital, Xiangyang, 441100 Hubei China
| | - Runhong Mei
- grid.260463.50000 0001 2182 8825Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China ,grid.412604.50000 0004 1758 4073Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Shida Qian
- grid.260463.50000 0001 2182 8825Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Peng Wang
- grid.260463.50000 0001 2182 8825Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Kaiyun Chen
- Department of Drug Clinical Trial, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China.
| | - Xuefeng Yu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
5
|
Qian X, Zhang L, Xie F, Cheng Y, Cui D. Network-Based Pharmacological Study on the Mechanism of Guishao-Liujun Decoction in the Treatment of Gastric Cancer. Front Pharmacol 2022; 13:937439. [PMID: 35865953 PMCID: PMC9294375 DOI: 10.3389/fphar.2022.937439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Objective: The aim of the study was to use a network pharmacological method to examine the mechanism of Guishao-Liujun decoction against gastric cancer (GC). Methods: The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and the Traditional Chinese Medicine Integrated Database (TCMID) were used to obtain the chemical composition and targets of all the drugs of Guishao-Liujun decoction, and the targets of GC were screened using GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. The obtained targets were imported into Cytoscape 3.7.2 software by using the R language to take the intersection for a Venn analysis to construct active ingredient target networks, and they were imported into the STRING database to construct protein-protein interaction (PPI) networks, with the BisoGenet plugin in Cytoscape 3.7.2 being used for analyzing network topology. On the potential target of Guishao-Liujun decoction for GC, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using the R-language bioconductor platform, and the outcomes were imported into Cytoscape 3.7.2 software to obtain the KEGG network map. The core targets were docked with the active components by the macromolecular docking software application AutoDock Vina. Results: A total of 243 chemical components and 1,448 disease targets including 127 intersecting targets were discovered. AKT1, TP53, and GO functional analysis were mainly associated with ubiquitination and oxidase reduction activity. In GC treatment, the KEGG analysis revealed that Guishao-Liujun decoction mainly acted through the tumor necrosis factor (TNF), interleukin 17 (IL-17), and cancer-related signaling pathways, with the best binding performance with TP53, as indicated by the outcomes of macromolecular docking. Conclusion: In the treatment of GC, Guishao-Liujun decoction works with a variety of components and targets, establishing the groundwork for further research into its mechanism of action.
Collapse
Affiliation(s)
- Xiaoqing Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lingle Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Feng Xie
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|