1
|
Billen M, Reynders S, Claes S, Kleinboelting S, Rozenski J, Bulai RG, Rocca E, Homer NZM, Webster SP, Kaminski TP, Lescrinier E, Schols D, Verwilst P. Discovery and exploration of disubstituted [1,2,5]oxadiazolo-[3,4-b]pyrazines as novel C-C chemokine receptor type 5 signaling inhibitors targeting the intracellular allosteric binding pocket. Eur J Med Chem 2025; 291:117600. [PMID: 40222165 DOI: 10.1016/j.ejmech.2025.117600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
The C-C chemokine receptor type 5 is a G protein-coupled receptor expressed on various immune cells, playing a crucial role in inflammation and chemotaxis. Beyond its physiological functions, C-C chemokine receptor type 5 is implicated in numerous diseases, including cardiovascular, central nervous system, immune system, and infectious diseases, as well as in the progression of cancer. The therapeutic potential of C-C chemokine receptor type 5 inhibition has been demonstrated by antagonists targeting the extracellular domain, notably maraviroc, a Food and Drug Administration-approved Human Immunodeficiency Virus entry inhibitor. However, challenges such as suboptimal pharmacokinetics and efficacy necessitate new antagonists with unique modes of action. Recent advancements in G protein-coupled receptor structural characterization have identified a novel intracellular allosteric binding site in chemokine receptors. This study introduces a series of disubstituted [1,2,5]oxadiazolo-[3,4-b]pyrazines targeting the intracellular allosteric binding pocket of C-C chemokine receptor type 5. Among these, compound 3ad emerged as a promising C-C chemokine receptor type 5-selective allosteric antagonist with a half-maximal inhibitory concentration of 1.09 μM and an almost 30-fold selectivity over C-C chemokine receptor type 2. Molecular dynamics simulations and a competition assay with a Gαq11 mimetic were used to confirm the intracellular binding mode of these compounds. This novel class of C-C chemokine receptor type 5-selective intracellular antagonists offers a foundation for developing molecular tools and therapeutic agents, potentially overcoming the limitations of current extracellular C-C chemokine receptor type 5 antagonists.
Collapse
Affiliation(s)
- Margaux Billen
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000, Leuven, Belgium; University of Edinburgh, Mass Spectrometry Core, Centre for Cardiovascular Science, 47 Little France Crescent, EH16 4TJ, Edinburgh, United Kingdom
| | - Sten Reynders
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000, Leuven, Belgium
| | - Sandra Claes
- KU Leuven, Rega Institute for Medical Research, Molecular, Structural and Translational Virology, Herestraat 49 - Box 1041, 3000, Leuven, Belgium
| | | | - Jef Rozenski
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000, Leuven, Belgium
| | - Radu-George Bulai
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000, Leuven, Belgium
| | - Edoardo Rocca
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000, Leuven, Belgium
| | - Natalie Z M Homer
- University of Edinburgh, Mass Spectrometry Core, Centre for Cardiovascular Science, 47 Little France Crescent, EH16 4TJ, Edinburgh, United Kingdom
| | - Scott P Webster
- University of Edinburgh, Mass Spectrometry Core, Centre for Cardiovascular Science, 47 Little France Crescent, EH16 4TJ, Edinburgh, United Kingdom
| | - Tim P Kaminski
- InSingulo AB, Pepparedsleden 1, Mölndal, SE-43183, Sweden
| | - Eveline Lescrinier
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Rega Institute for Medical Research, Molecular, Structural and Translational Virology, Herestraat 49 - Box 1041, 3000, Leuven, Belgium
| | - Peter Verwilst
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
2
|
Meden A, Claes S, Van Loy T, Zorman M, Proj M, Schols D, Gobec S, De Jonghe S. Structure-activity relationship study of navarixin analogues as dual CXCR2 and CCR7 antagonists. Bioorg Chem 2025; 159:108423. [PMID: 40179581 DOI: 10.1016/j.bioorg.2025.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Despite the promise of the human chemokine receptor 7 (CCR7) as drug target for the treatment of cancer metastasis and autoimmune diseases, there are no potent and selective CCR7 antagonists known in literature. In this work, a 1,2,5-thiadiazole 1,1-dioxide with low μM activity as a CXCR2 and CCR7 antagonist was selected as starting point for a structure-activity relationship study. The replacement of the central thiadiazole dioxide motif with squaramide led to low nanomolar CCR7 antagonism. Additional systematic structural variations afforded various squaramide analogues that displayed potent CCR7 antagonism in a calcium mobilization assay with IC50 values in the low nM range. Unfortunately, the same compounds also displayed potent CXCR2 antagonistic activity and should therefore be considered as dual CCR7/CXCR2 antagonists.
Collapse
Affiliation(s)
- Anže Meden
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia
| | - Sandra Claes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular, Structural and Translational Virology Research Group, Herestraat 49, box 1043, 3000 Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular, Structural and Translational Virology Research Group, Herestraat 49, box 1043, 3000 Leuven, Belgium
| | - Maša Zorman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia
| | - Matic Proj
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular, Structural and Translational Virology Research Group, Herestraat 49, box 1043, 3000 Leuven, Belgium
| | - Stanislav Gobec
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia.
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular, Structural and Translational Virology Research Group, Herestraat 49, box 1043, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Chung J, Hahn H, Flores-Espinoza E, Thomsen ARB. Artificial Intelligence: A New Tool for Structure-Based G Protein-Coupled Receptor Drug Discovery. Biomolecules 2025; 15:423. [PMID: 40149959 PMCID: PMC11940138 DOI: 10.3390/biom15030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Understanding protein structures can facilitate the development of therapeutic drugs. Traditionally, protein structures have been determined through experimental approaches such as X-ray crystallography, NMR spectroscopy, and cryo-electron microscopy. While these methods are effective and are considered the gold standard, they are very resource-intensive and time-consuming, ultimately limiting their scalability. However, with recent developments in computational biology and artificial intelligence (AI), the field of protein prediction has been revolutionized. Innovations like AlphaFold and RoseTTAFold enable protein structure predictions to be made directly from amino acid sequences with remarkable speed and accuracy. Despite the enormous enthusiasm associated with these newly developed AI-approaches, their true potential in structure-based drug discovery remains uncertain. In fact, although these algorithms generally predict overall protein structures well, essential details for computational ligand docking, such as the exact location of amino acid side chains within the binding pocket, are not predicted with the necessary accuracy. Additionally, docking methodologies are considered more as a hypothesis generator rather than a precise predictor of ligand-target interactions, and thus, usually identify many false-positive hits among only a few correctly predicted interactions. In this paper, we are reviewing the latest development in this cutting-edge field with emphasis on the GPCR target class to assess the potential role of AI approaches in structure-based drug discovery.
Collapse
Affiliation(s)
- Jason Chung
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (J.C.); (H.H.); (E.F.-E.)
- NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| | - Hyunggu Hahn
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (J.C.); (H.H.); (E.F.-E.)
- NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| | - Emmanuel Flores-Espinoza
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (J.C.); (H.H.); (E.F.-E.)
- NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| | - Alex R. B. Thomsen
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (J.C.); (H.H.); (E.F.-E.)
- NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
4
|
Kayastha K, Zhou Y, Brünle S. Structural perspectives on chemokine receptors. Biochem Soc Trans 2024; 52:1011-1024. [PMID: 38856028 PMCID: PMC11346446 DOI: 10.1042/bst20230358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Chemokine receptors are integral to the immune system and prime targets in drug discovery that have undergone extensive structural elucidation in recent years. We outline a timeline of these structural achievements, discuss the intracellular negative allosteric modulation of chemokine receptors, analyze the mechanisms of orthosteric receptor activation, and report on the emerging concept of biased signaling. Additionally, we highlight differences of G-protein binding among chemokine receptors. Intracellular allosteric modulators in chemokine receptors interact with a conserved motif within transmembrane helix 7 and helix 8 and exhibit a two-fold inactivation mechanism that can be harnessed for drug-discovery efforts. Chemokine recognition is a multi-step process traditionally explained by a two-site model within chemokine recognition site 1 (CRS1) and CRS2. Recent structural studies have extended our understanding of this complex mechanism with the identification of CRS1.5 and CRS3. CRS3 is implicated in determining ligand specificity and surrounds the chemokine by almost 180°. Within CRS3 we identified the extracellular loop 2 residue 45.51 as a key interaction mediator for chemokine binding. Y2917.43 on the other hand was shown in CCR1 to be a key determinant of signaling bias which, along with specific chemokine-dependent phosphorylation ensembles at the G-protein coupled receptors (GPCR's) C-terminus, seems to play a pivotal role in determining the direction of signal bias in GPCRs.
Collapse
Affiliation(s)
- Kanwal Kayastha
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Yangli Zhou
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Steffen Brünle
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
5
|
Spahn MA, Luyten K, Van Loy T, Sathekge M, Deroose CM, Koole M, Schols D, Vanduffel W, De Vos K, Annaert P, Bormans G, Cleeren F. Second generation Al 18F-labeled D-amino acid peptide for CXCR4 targeted molecular imaging. Nucl Med Biol 2024; 132-133:108906. [PMID: 38518400 DOI: 10.1016/j.nucmedbio.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND The C-X-C chemokine receptor type 4 (CXCR4) is overexpressed in many cancers, e.g. multiple myeloma and acute leukemia, yet solely [68Ga]PentixaFor is used for clinical PET imaging. The aim of this study was to develop and assess a second generation Al18F-labeled D-amino acid peptide based on the viral macrophage inflammatory protein II for CXCR4 targeted molecular imaging. METHODS We designed a library of monomer and multimer constructs and evaluated their binding affinity for human and mouse CXCR4. Based on these results, we selected the best vector molecule for development of an Al18F-labeled ligand, [18F]AlF-NOTA-2xDV1(c11sc12s), which was further evaluated in a cell-based binding assay to assess its binding properties and specificity for CXCR4. Next, pharmacokinetics and tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) were evaluated in naïve mice and mice with xenografts derived from U87.CXCR4 cells. Finally, we performed an imaging study in a non-human primate to assess the in vivo distribution of this novel radioligand in a species closely related to humans. RESULTS The lead ligand AlF-NOTA-2xDV1(c11sc12s) showed six-fold higher affinity for human CXCR4 compared to Ga-Pentixafor. The corresponding radiotracer was obtained in a good radiochemical yield of 40.1 ± 13.5 % (n = 4) and apparent molar activity of 20.4 ± 3.3 MBq/nmol (n = 4) after optimization. In U87.CD4.CXCR4 cell binding assays, the total bound fraction of [18F]AlF-NOTA-(2×)DV1(c11sc12s) was 32.4 ± 1.8 %. This fraction could be reduced by 82.5 % in the presence of 75 μM AMD3100. In naïve mice, [18F]AlF-NOTA-2xDV1(c11sc12s) accumulated in organs expressing mouse CXCR4, e.g. the liver (SUVmean (mean standardized uptake value) 75 min p.i. 11.7 ± 0.6), which was blockable by co-injecting AMD3100 (5 mg/kg). In U87.CXCR4 xenografted tumor mice, the tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) remained low (SUVmean 0.5 ± 0.1), but was reduced by co-administration of AMD3100. Surprisingly, [18F]AlF-NOTA-2xDV1(c11sc12s) exhibited a similar biodistribution in a non-human primate as in mice indicating off-target binding of [18F]AlF-NOTA-2xDV1(c11sc12s) in liver tissue. We confirmed that [18F]AlF-NOTA-2xDV1(c11sc12s) is taken up by hepatocytes using in vitro studies and that the uptake can be blocked with AMD3100 and rifampicin, a potent organic anion-transporting-polypeptide (OATP)1B1 and OATP1B3 inhibitor. CONCLUSION The second generation D-peptide AlF-NOTA-2xDV1(c11sc12s) showed high affinity for human CXCR4 and the corresponding radiotracer was produced in good radiochemical yields. However, [18F]AlF-NOTA-2xDV1(c11sc12s) is not specific for CXCR4 and is also a substrate for OATP1B1 and/or OATP1B3, known to mediate hepatic uptake. Therefore, D-amino acid peptides, based on the viral macrophage inflammatory protein II, are not the prefered vector molecule for the development of CXCR4 targeting molecular imaging tools.
Collapse
Affiliation(s)
- Muriel Aline Spahn
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Luyten
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, KU Leuven Medical School, Leuven, Belgium
| | - Kristof De Vos
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Optimization of triazolo[4,5-d]pyrimidines towards human CC chemokine receptor 7 (CCR7) antagonists. Eur J Med Chem 2023; 251:115240. [PMID: 36924670 DOI: 10.1016/j.ejmech.2023.115240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
CCR7 signaling directs the migration of both immune cells and cancer cells to the lymph nodes, is involved in numerous chronic inflammatory disorders and lymph node metastases. Despite the therapeutic promise of CCR7 antagonists, no potent and selective small molecule CCR7 antagonists have been reported to date. Since most human chemokine G protein-coupled receptors (GPCRs) share a conserved intracellular allosteric binding site, new CCR7 antagonist chemotypes may be identified by screening small molecules that are known to target this site in other chemokine GPCRs. In this work, our previously prepared series of 14 scaffold-modified analogues of a known thiazolo[4,5-d]pyrimidine CXCR2 antagonist were screened as potential CCR7 antagonists. This resulted in the discovery of a triazolo[4,5-d]pyrimidine analogue with an IC50 of 2.43 μM against CCR7 and 0.66 μM against CXCR2. Exploration of the structure-activity relationship (SAR) for the 3-, 5- and 7-position substituents of this triazolo[4,5-d]pyrimidine resulted in improved potency and selectivity, with an IC50 of 0.43 μM and 11.02 μM against CCR7 and CXCR2, respectively, for the most selective derivative. Molecular docking showed that the binding mode of these triazolo[4,5-d]pyrimidines in CCR7 and CXCR2 corresponds with those of previously co-crystallized ligands.
Collapse
|