1
|
Yang F, Gao W, Wang J, Li X, Li H. Progress of Chinese Medicine in Regulating Microglial Polarization against Alzheimer's Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2255-2275. [PMID: 39721955 DOI: 10.1142/s0192415x24500873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD), the predominant form of dementia, is a neurodegenerative disorder of the central nervous system (CNS) characterized by a subtle onset and a spectrum of cognitive and functional declines. The clinical manifestation of AD encompasses memory deficits, cognitive deterioration, and behavioral disturbances, culminating in a severe impairment of daily living skills. Despite its high prevalence, accounting for 60-70% of all dementia cases, there remains an absence of curative therapeutics. Microglia (MG), the resident immune cells of the CNS, exhibit a bifurcated role in AD pathogenesis. Functioning in a neuroprotective capacity, MGs express scavenger receptors, facilitating the clearance of [Formula: see text]-amyloid protein (A[Formula: see text]) and cellular debris. Conversely, aberrant activation of MGs can lead to the secretion of pro-inflammatory cytokines, thereby propagating neuroinflammatory responses that are detrimental to neuronal integrity. The dynamics of MG activation and the ensuing neuroinflammation are pivotal in the evolution of AD. Chinese medicine (CM), a treasure trove of traditional Chinese cultural practices, has demonstrated significant potential in the therapeutic management of AD. Over the past triennium, CM has garnered considerable research attention for its multifaceted approaches to AD, including the regulation of MG polarization. This review synthesizes current knowledge on the origins, polarization dynamics, and mechanistic interplay of MG with AD pathology. It further explores the nexus between MG polarization and cardinal pathological hallmarks of AD, such as A[Formula: see text] plaque deposition, hyperphosphorylation of tau, synaptic plasticity impairments, neuroinflammation, and brain-gut-axis dysregulation. The review also encapsulates the therapeutic strategies of CM, which encompass monomers, formulae, and acupuncture. These strategies modulate MG polarization in the context of AD treatment, thereby providing a robust theoretical framework in which to conduct future investigative endeavors in both the clinical and preclinical realms.
Collapse
Affiliation(s)
- Fengge Yang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
| | - Wei Gao
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
- Jiangsu College of Nursing Jiangsu, Huaian, Huaiyin 223001, P. R. China
| | - Junting Wang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
- The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P. R. China
| | - Xue Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
| | - Honglin Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
- The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P. R. China
| |
Collapse
|
2
|
Mahajan K, Sharma S, Gautam RK, Goyal R, Mishra DK, Singla RK. Insights on therapeutic approaches of natural anti-Alzheimer's agents in the management of Alzheimer's disease: A future perspective. J Alzheimers Dis 2024; 102:897-923. [PMID: 39523509 DOI: 10.1177/13872877241296557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the current scenario, Alzheimer's disease is a complex, challenging, and arduous health issue, and its prevalence, together with comorbidities, is accelerating around the universe. Alzheimer's disease is becoming a primary concern that significantly impacts an individual's status in life. The traditional treatment of Alzheimer's disease includes some synthetic drugs, which have numerous dangerous side effects, a high risk of recurrence, lower bioavailability, and limited treatment. Hence, the current article is a detailed study and review of all known information on plant-derived compounds as natural anti-Alzheimer's agents, including their biological sources, active phytochemical ingredients, and a possible mode of action. With the help of a scientific data search engine, including the National Center for Biotechnology Information (NCBI/PubMed), Science Direct, and Google Scholar, analysis from 2001 to 2024 has been completed. This article also described clinical studies on phytoconstituents used to treat Alzheimer's disease. Plant-derived compounds offer promising alternatives to synthetic drugs in treating Alzheimer's disease, with the potential for improving cognitive function and slowing down the progression of the disease. Further research and clinical trials are needed to fully explore their therapeutic potential and develop effective strategies for managing this complex condition.
Collapse
Affiliation(s)
- Kalpesh Mahajan
- School of Pharmacy and Technology Management, SVKMS NMIMS Maharashtra, Shirpur, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, Maharashtra, India
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Rau, Indore, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Dinesh Kumar Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Koni, Bilaspur (C.G.), India
| | - Rajeev K Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Lim DW, Lee JE, Lee C, Kim YT. Natural Products and Their Neuroprotective Effects in Degenerative Brain Diseases: A Comprehensive Review. Int J Mol Sci 2024; 25:11223. [PMID: 39457003 PMCID: PMC11508681 DOI: 10.3390/ijms252011223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
As the global population ages, the incidence of neurodegenerative diseases such as Alzheimer's and Parkinson's is rapidly rising. These diseases present a significant public health challenge, as they severely impair cognitive and motor functions, ultimately leading to a substantial reduction in quality of life and placing a heavy burden on healthcare systems worldwide. Although several therapeutic agents have been developed to manage the symptoms of these diseases, their effectiveness is often limited, and there remains an urgent need for preventive strategies. Growing evidence indicates that bioactive compounds from natural products possess neuroprotective properties through antioxidant and anti-inflammatory effects, modulating key pathways such as phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and brain-derived neurotrophic factor-tropomyosin receptor kinase B-cAMP response element-binding protein (BDNF-TrkB-CREB), which are crucial for neuronal survival. These compounds may also reduce amyloid-beta and tau pathology, as well as enhance cholinergic neurotransmission by inhibiting acetylcholinesterase activity. By targeting oxidative stress, neuroinflammation, and neurodegeneration, natural products offer a promising approach for both prevention and treatment. These findings suggest that natural products may be promising for preventing and treating neurodegenerative diseases. This review aims to explore the pathogenesis of neurodegenerative diseases, the limitations of current therapies, and the potential role of natural products as therapeutic agents.
Collapse
Affiliation(s)
| | | | | | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.W.L.); (J.-E.L.); (C.L.)
| |
Collapse
|
4
|
Youn K, Jun M. Determination of Potential Lead Compound from Magnolia officinalis for Alzheimer's Disease through Pharmacokinetic Prediction, Molecular Docking, Dynamic Simulation, and Experimental Validation. Int J Mol Sci 2024; 25:10507. [PMID: 39408835 PMCID: PMC11477134 DOI: 10.3390/ijms251910507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Amyloid β protein (Aβ) deposition has been implicated as the molecular driver of Alzheimer's disease (AD) progression. The modulation of the formation of abnormal aggregates and their post-translational modification is strongly suggested as the most effective approach to anti-AD. Beta-site APP-cleaving enzyme 1 (BACE1) acts upstream in amyloidogenic processing to generate Aβ, which rapidly aggregates alone or in combination with acetylcholinesterase (AChE) to form fibrils. Accumulated Aβ promotes BACE1 activation via glycogen synthase kinase-3β (GSK-3β) and is post-translationally modified by glutaminyl cyclase (QC), resulting in increased neurotoxicity. A novel multi-target inhibitor as a potential AD agent was identified using an in silico approach and experimental validation. Magnolia officinalis, which showed the best anti-AD activity in our preliminary study, was subjected to analysis, and 82 compounds were studied. Among 23 compounds with drug-likeness, blood-brain barrier penetration, and safety, honokiol emerged as a lead structure for the inhibition of BACE1, AChE, QC, and GSK-3β in docking and molecular dynamics (MD) simulations. Furthermore, honokiol was found to be an excellent multi-target inhibitor of these enzymes with an IC50 of 6-90 μM, even when compared to other natural single-target inhibitors. Taken together, the present study is the first to demonstrate that honokiol acts as a multiple enzyme inhibitor with an excellent pharmacokinetic and safety profile which may provide inhibitory effects in broad-range areas including the overproduction, aggregation, and post-translational modification of Aβ. It also provides insight into novel structural features for the design and discovery of multi-target inhibitors for anti-AD.
Collapse
Affiliation(s)
- Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
5
|
Wang R, Mao L, Liang P, Gan Y, Gao Q, Liang S, Zhang D, Luo G, Yang S. Combining metabolomics and network pharmacology to investigate the protective effect of Jiawei Xinglou Chengqi Granules in ischemic stroke. Braz J Med Biol Res 2024; 57:e13388. [PMID: 38958365 PMCID: PMC11221863 DOI: 10.1590/1414-431x2024e13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/17/2024] [Indexed: 07/04/2024] Open
Abstract
Jiawei Xinglou Chengqi Granule (JXCG) is an effective herbal medicine for the treatment of ischemic stroke (IS). JXCG has been shown to effectively ameliorate cerebral ischemic symptoms in clinical practice, but the underlying mechanisms are unclear. In this study, we investigated the mechanisms of action of JXCG in the treatment of IS by combining metabolomics with network pharmacology. The chemical composition of JXCG was analyzed using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry (UHPLC-Q-TOF MS) untargeted metabolomics were used to identify differential metabolites within metabolic pathways. Network pharmacology was applied to mine potential targets of JXCG in the treatment of IS. The identified key targets were validated by constructing an integrated network of metabolomics and network pharmacology and by molecular docking using Cytoscape. The effect of JXCG on IS was evaluated in vivo, and the predicted targets and pathways of JXCG in IS therapy were assessed using immunoblotting. Combining metabolomics and network pharmacology, we identified the therapeutic targets of JXCG for IS. Notably, JXCG lessened neuronal damage and reduced cerebral infarct size in rats with IS. Western blot analysis showed that JXCG upregulated PRKCH and downregulated PRKCE and PRKCQ proteins. Our combined network pharmacology and metabolomics findings showed that JXCG may have therapeutic potential in the treatment of IS by targeting multiple factors and pathways.
Collapse
Affiliation(s)
- Raoqiong Wang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Yulu Gan
- Southwest Medical University, Luzhou, China
| | - Qixue Gao
- Southwest Medical University, Luzhou, China
| | | | - Dechou Zhang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Gang Luo
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Rodríguez-Nuévalos S, Espinosa M, Leyva-Pérez A. Soluble individual metal atoms and ultrasmall clusters catalyze key synthetic steps of a natural product synthesis. Commun Chem 2024; 7:76. [PMID: 38575790 PMCID: PMC10995175 DOI: 10.1038/s42004-024-01160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Metal individual atoms and few-atom clusters show extraordinary catalytic properties for a variety of organic reactions, however, their implementation in total synthesis of complex organic molecules is still to be determined. Here we show a 11-step linear synthesis of the natural product (±)-Licarin B, where individual Pd atoms (Pd1) catalyze the direct aerobic oxidation of an alcohol to the carboxylic acid (steps 1 and 6), Cu2-7 clusters catalyze carbon-oxygen cross couplings (steps 3 and 8), Pd3-4 clusters catalyze a Sonogashira coupling (step 4) and Pt3-5 clusters catalyze a Markovnikov hydrosylilation of alkynes (step 5), as key reactions during the synthetic route. In addition, the new synthesis of Licarin B showcases an unexpected selective alkene hydrogenation with metal-free NaBH4 and an acid-catalyzed intermolecular carbonyl-olefin metathesis as the last step, to forge a trans-alkene group. These results, together, open new avenues in the use of metal individual atoms and clusters in organic synthesis, and confirm their exceptional catalytic activity in late stages during complex synthetic programmes.
Collapse
Affiliation(s)
- Silvia Rodríguez-Nuévalos
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Miguel Espinosa
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022, Valencia, Spain.
| |
Collapse
|
7
|
Liu R, Cao S, Cai Y, Zhou M, Gou X, Huang Y. Brain and serum metabolomic studies reveal therapeutic effects of san hua decoction in rats with ischemic stroke. Front Endocrinol (Lausanne) 2023; 14:1289558. [PMID: 38098862 PMCID: PMC10720749 DOI: 10.3389/fendo.2023.1289558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
San Hua Decoction (SHD) is a traditional four-herbal formula that has long been used to treat stroke. Our study used a traditional pharmacodynamic approach combined with systematic and untargeted metabolomics analyses to further investigate the therapeutic effects and potential mechanisms of SHD on ischemic stroke (IS). Male Sprague-Dawley rats were randomly divided into control, sham-operated, middle cerebral artery occlusion reperfusion (MCAO/R) model and SHD groups. The SHD group was provided with SHD (7.2 g/kg, i.g.) and the other three groups were provided with equal amounts of purified water once a day in the morning for 10 consecutive days. Our results showed that cerebral infarct volumes were reduced in the SHD group compared with the model group. Besides, SHD enhanced the activity of SOD and decreased MDA level in MCAO/R rats. Meanwhile, SHD could ameliorate pathological abnormalities by reducing neuronal damage, improving the structure of damaged neurons and reducing inflammatory cell infiltration. Metabolomic analysis of brain and serum samples with GC-MS techniques revealed 55 differential metabolites between the sham and model groups. Among them, the levels of 12 metabolites were restored after treatment with SHD. Metabolic pathway analysis showed that SHD improved the levels of 12 metabolites related to amino acid metabolism and carbohydrate metabolism, 9 of which were significantly associated with disease. SHD attenuated brain inflammation after ischemia-reperfusion. The mechanisms underlying the therapeutic effects of SHD in MCAO/R rats are related to amino acid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Ruisi Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengxuan Cao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, China
| | - Yufeng Cai
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, China
| | - Mingmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Huang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, China
| |
Collapse
|
8
|
Faysal M, Khan J, Zehravi M, Nath N, Singh LP, Kakkar S, Perusomula R, Khan PA, Nainu F, Asiri M, Khan SL, Das R, Emran TB, Wilairatana P. Neuropharmacological potential of honokiol and its derivatives from Chinese herb Magnolia species: understandings from therapeutic viewpoint. Chin Med 2023; 18:154. [PMID: 38001538 PMCID: PMC10668527 DOI: 10.1186/s13020-023-00846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/30/2023] [Indexed: 11/26/2023] Open
Abstract
Honokiol is a neolignan biphenol found in aerial parts of the Magnolia plant species. The Magnolia plant species traditionally belong to China and have been used for centuries to treat many pathological conditions. Honokiol mitigates the severity of several pathological conditions and has the potential to work as an anti-inflammatory, anti-angiogenic, anticancer, antioxidant, and neurotherapeutic agent. It has a long history of being employed in the healthcare practices of Southeast Asia, but in recent years, a greater scope of research has been conducted on it. Plenty of experimental evidence suggests it could be beneficial as a neuroprotective bioactive molecule. Honokiol has several pharmacological effects, leading to its exploration as a potential therapy for neurological diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, anxiety, depression, spinal cord injury, and so on. So, based on the previous experimentation reports, our goal is to discuss the neuroprotective properties of honokiol. Besides, honokiol derivatives have been highlighted recently as possible therapeutic options for NDs. So, this review focuses on honokiol's neurotherapeutic actions and toxicological profile to determine their safety and potential use in neurotherapeutics.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Jamuhar, Sasaram, (Rohtas), Bihar, 821305, India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Rajashekar Perusomula
- Cognitive Science Research Initiative Lab, Vishnu Institute of Pharmaceutical Education & Research, Narsapur, India
| | - Pathan Amanulla Khan
- Department of Pharmacy Practice, Anwar Ul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra, 413520, India
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
9
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
10
|
Ming-Xin Guo MM, Wu X, Feng YF, Hu ZQ. Research Progress on the Structural Modification of Magnolol and Honokiol and the Biological Activities of Their Derivatives. Chem Biodivers 2023; 20:e202300754. [PMID: 37401658 DOI: 10.1002/cbdv.202300754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Magnolol and Honokiol are the primary active components that have been identified and extracted from Magnolia officinalis, and several investigations have demonstrated that they have significant pharmacological effects. Despite their therapeutic benefits for a wide range of illnesses, research on and the implementation of these compounds have been hindered by their poor water solubility and low bioavailability. Researchers are continually using chemical methods to alter their structures to make them more effective in treating and preventing diseases. Researchers are also continuously developing derivative drugs with high efficacy and few adverse effects. This article summarizes and analyzes derivatives with significant biological activities reported in recent research obtained by structural modification. The modification sites have mainly focused on the phenolic hydroxy groups, benzene rings, and diene bonds. Changes to the allyl bisphenol structure will result in unexpected benefits, including high activity, low toxicity, and good bioavailability. Furthermore, alongside earlier experimental research in our laboratory, the structure-activity relationships of magnolol and honokiol were preliminarily summarized, providing experimental evidence for improving their development and utilization.
Collapse
Affiliation(s)
- M M Ming-Xin Guo
- Department of pharmacy, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, Yixing, 214200, China
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xia Wu
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi-Fan Feng
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhi-Qiang Hu
- Department of pharmacy, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, Yixing, 214200, China
| |
Collapse
|