1
|
Wittig C, König JM, Pan X, Aman J, Bogaard HJ, Yu PB, Kuebler WM, Baum K, Szulcek R. Shear stress unveils patient-specific transcriptional signatures in PAH: Towards personalized molecular diagnostics. Theranostics 2025; 15:1589-1605. [PMID: 39897541 PMCID: PMC11780538 DOI: 10.7150/thno.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 02/04/2025] Open
Abstract
Rationale: Pulmonary arterial hypertension (PAH) is a life-threatening disorder characterized by increased pulmonary blood pressures and regional inhomogeneities in flows, with diagnostic and treatment challenges arising from diverse underlying pathogenic mechanisms. Conventional in vitro models often obscure the mechanistic nuances of PAH by failing to replicate the dynamic mechanical environment of the diseased lung, limiting the identification of specific molecular patterns. To address this, we employed an in vitro shear stress model simulating physiological or pathological conditions to explore the transcriptional heterogeneity of human pulmonary microvascular endothelial cells (hPMECs) from PAH patients and healthy controls within their respective biomechanical context. Methods & Results: hPMECs from PAH patients and controls were exposed to static, low shear stress (LSS), and high shear stress (HSS) conditions, followed by bulk RNA-sequencing. While increasing shear stress resulted in a greater number of differentially expressed genes, traditional grouped analysis showed minimal overall transcriptional differences. Further, pathway enrichment analysis indicated common shear-induced responses in both groups, suggesting that standard analysis methods may mask meaningful disease-specific changes. Crucially, detailed dimensionality reduction analyses revealed pronounced inter-patient variability among PAH donors in response to increasing shear stress, facilitating the identification of 398 genes driving this transcriptional heterogeneity. Unsupervised clustering of these high-variability genes enabled the sub-classification of patients based on their unique transcriptomic profiles, each linked to specific combinations of PAH associated pathogenic pathways such as mesenchymal transition, inflammation, metabolism, extracellular matrix remodeling, and cell cycle/DNA damage signaling. Importantly, re-analysis of published peripheral blood mononuclear cell (PBMC) omics data from PAH patients confirmed the clinical feasibility to utilize these high-variability genes as a non-invasive, accessible approach for molecular patient stratification. Conclusion: Our study uncovers patient-specific transcriptomic patterns in PAH, providing a novel molecular sub-classification strategy. These findings represent a significant step toward personalized molecular diagnostics in PAH and eventual therapeutic interventions for clinically well-defined PAH patients, with potential applications in clinically accessible cell populations such as PBMCs.
Collapse
Affiliation(s)
- Corey Wittig
- Laboratory of in vitro modelling systems of pulmonary and thrombotic diseases, Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- DZL (German Centre for Lung Research), partner site Berlin, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jakob M König
- Laboratory of in vitro modelling systems of pulmonary and thrombotic diseases, Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- DZL (German Centre for Lung Research), partner site Berlin, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Xiaoke Pan
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Paul B Yu
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wolfgang M Kuebler
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Departments of Physiology and Surgery, University of Toronto, Toronto, ON, Canada
| | - Katharina Baum
- Department of Mathematics and Computer Science, Free University Berlin, 14195 Berlin, Germany
- Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, 14482 Potsdam, Germany
- Windreich Department of Artificial Intelligence and Human Health & Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, 10029 New York City, NY, USA
| | - Robert Szulcek
- Laboratory of in vitro modelling systems of pulmonary and thrombotic diseases, Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- DZL (German Centre for Lung Research), partner site Berlin, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiac Anesthesiology and Intensive Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
2
|
Luo J, Wang L, Cui C, Chen H, Zeng W, Li X. MicroRNA-19a-3p inhibits endothelial dysfunction in atherosclerosis by targeting JCAD. BMC Cardiovasc Disord 2024; 24:394. [PMID: 39080547 PMCID: PMC11287888 DOI: 10.1186/s12872-024-04063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024] Open
Abstract
OBJECTIVE To examine the influences and mechanisms of MicroRNA-19a-3p (miR-19a-3p) on endothelial dysfunction in atherosclerosis. METHODS An analysis of miR-19a expression was carried out using the Gene Expression Omnibus (GEO) database. The effect of miR-19a-3p on endothelial function in HUVECs was evaluated by miR-19a-3p overexpression under TNF-α treatment. Luciferase assays were performed to explore the potential target genes. Overexpression of junctional protein associated with coronary artery disease (JCAD) was used to examine the effects of miR-19a-3p on cell adhesion, and proliferation. RESULTS MiR-19a-3p expression in endothelial cells decreased after exposure to TNF-α and/or oscillatory flow, consistent with the expression change of miR-19a-3p found in atherosclerotic plaques. Additionally, endothelial cell dysfunction and inflammation were significantly diminished by miR-19a-3p overexpression but markedly exacerbated by miR-19a-3p inhibition. MiR-19a-3p transfection significantly decreased the expression of JCAD by binding to the 3'-UTR of JCAD mRNA. Furthermore, the protective effect of miR-19a-3p against endothelial cell dysfunction and inflammation was achieved by regulating JCAD and was closely linked to the Hippo/YAP signaling pathway. CONCLUSION MiR-19a-3p expression is a crucial molecular switch in the onset of atherosclerosis and miR-19a-3p overexpression is a possible pharmacological therapeutic strategy for reversing the development of atherosclerosis.
Collapse
Affiliation(s)
- Jinque Luo
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
- College of Pharmacy, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Ling Wang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
- College of Pharmacy, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Chaoyue Cui
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
| | - Hongyu Chen
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
| | - Wanli Zeng
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
| | - Xin Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China.
| |
Collapse
|
3
|
Yu X, Huang J, Liu X, Li J, Yu M, Li M, Xie Y, Li Y, Qiu J, Xu Z, Zhu T, Zhang W. LncRNAH19 acts as a ceRNA of let-7 g to facilitate endothelial-to-mesenchymal transition in hypoxic pulmonary hypertension via regulating TGF-β signalling pathway. Respir Res 2024; 25:270. [PMID: 38987833 PMCID: PMC11238495 DOI: 10.1186/s12931-024-02895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality rates, and the efficiency of current HPH treatment strategies is unsatisfactory. Endothelial-to-mesenchymal transition (EndMT) in the pulmonary artery plays a crucial role in HPH. Previous studies have shown that lncRNA-H19 (H19) is involved in many cardiovascular diseases by regulating cell proliferation and differentiation but the role of H19 in EndMT in HPH has not been defined. METHODS In this research, the expression of H19 was investigated in PAH human patients and rat models. Then, we established a hypoxia-induced HPH rat model to evaluate H19 function in HPH by Echocardiography and hemodynamic measurements. Moreover, luciferase reporter gene detection, and western blotting were used to explore the mechanism of H19. RESULTS Here, we first found that the expression of H19 was significantly increased in the endodermis of pulmonary arteries and that H19 deficiency obviously ameliorated pulmonary vascular remodelling and right heart failure in HPH rats, and these effects were associated with inhibition of EndMT. Moreover, an analysis of luciferase activity indicated that microRNA-let-7 g (let-7 g) was a direct target of H19. H19 deficiency or let-7 g overexpression can markedly downregulate the expression of TGFβR1, a novel target gene of let-7 g. Furthermore, inhibition of TGFβR1 induced similar effects to H19 deficiency. CONCLUSIONS In summary, our findings demonstrate that the H19/let-7 g/TGFβR1 axis is crucial in the pathogenesis of HPH by stimulating EndMT. Our study may provide new ideas for further research on HPH therapy in the near future.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Rats
- Disease Models, Animal
- Epithelial-Mesenchymal Transition/physiology
- Epithelial-Mesenchymal Transition/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypoxia/metabolism
- Hypoxia/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- RNA, Competitive Endogenous/genetics
- RNA, Competitive Endogenous/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/physiology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Xin Yu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Xu Liu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, P.R. China
| | - Juan Li
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Miao Yu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Minghui Li
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Yuliang Xie
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Ye Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junyu Qiu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, 330031, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China.
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China.
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China.
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China.
| |
Collapse
|
4
|
Wang HJ, Ma L, Yu Q. Cited2 inhibited hypoxia-induced proliferation and migration of PASMCs via the TGF-β1/Cited2/PPARγ pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:509-517. [PMID: 38419888 PMCID: PMC10897560 DOI: 10.22038/ijbms.2023.74455.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/08/2023] [Indexed: 03/02/2024]
Abstract
Objectives Proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) contribute to hypoxia-induced pulmonary hypertension (HPH). The transcription factor Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (Cited2) has been implicated in the control of tumor cells and mesenchymal stem cell (MSC) and cardiomyocyte growth or migration. Whether Cited2 is involved in the proliferation and migration of PASMCs and the underlying mechanisms deserve to be explored. Materials and Methods Cited2 expression was detected in rat PASMCs under hypoxia conditions and HPH rat models. The effect of Cited2 on the proliferation and migration of PASMC was detected by overexpression or knockdown of the Cited2 gene. After PAMSCs were treated with recombinant TGF-β1 and the lentivirus vector overexpressing Cited2, expression of peroxisome proliferator-activated receptor gamma (PPARγ) was examined by western blotting. Results We revealed that hypoxia down-regulated the expression of Cited2 in PASMCs and rat pulmonary arteries. Cited2 overexpression inhibited the proliferation and migration of PASMCs under hypoxia, while Cited2 knockdown induced the proliferation and migration of PASMCs. Cited2 inhibits the negative regulation of the TGF-β1 pathway on PPARγ to inhibit the proliferation and migration of PASMCs. Conclusion These findings suggest that increased Cited2 expression contributes to the inhibition of PASMCs proliferation and migration by regulating TGF-β1-mediated target gene expression in HPH and provides a new target for molecular therapy of HPH.
Collapse
Affiliation(s)
- Hong-Juan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, China
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China
| | - Lan Ma
- Department of Plateau Medical Center, Qinghai University, Xining 810000, Qinghai, China
| | - Qin Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, China
- Department of Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|