1
|
Li X, Zhang F, Ke Y, Liu H, Hu Z, Wei L. Differentiation of Acute Leukemia Cells Including Cells with MLL-AF4 Rearrangements Induced by Jiyuan Oridonin A. Recent Pat Anticancer Drug Discov 2025; 20:158-167. [PMID: 38204268 DOI: 10.2174/0115748928263141231204112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Chromosomal rearrangements involving the Mixed lineage leukemia (MLL) gene are observed in acute leukemia (AL) patients, which have poor prognosis, especially in infants. Hence, there is still a challenge to develop other effective agents to treat AL with MLL rearrangements (MLLr). MLL has been shown to rearrange with partner genes, of which the most frequently observed are AF4 and AF9. Moreover, AL is characterized by a differentiation blockage resulting in the accumulation of immature cells. An ent-kaurene diterpenoid compound, Jiyuan Oridonin A (JOA), has been shown to reduce the viability of AML cells by differentiation. METHODS We aimed to evaluate the effect of JOA on the growth and differentiation of AL cells (SEM, JURKAT and MV4-11) including cells with MLLr-AF4 by cell proliferation assay, colony formation assay, cell cycle analysis, cell apoptosis analysis, measurement of cell surface antigens and cell morphology, mRNA-sequencing analysis, quantitative Real-time PCR and Western blotting analysis. RESULTS Our findings demonstrated that the proliferation of AL cells including cells with MLLr-AF4 was significantly suppressed by JOA, which induced cell differentiation followed by G0/G1 cell cycle withdrawal. Moreover, JOA-mediated cell differentiation was likely due to activation of G-CSFR in MV4-11 cells. CONCLUSION Our results suggest that JOA may be considered a promising anti-leukemia compound to develop to surmount the differentiation block in AL patients.
Collapse
Affiliation(s)
- Xueming Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Fenglian Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yu Ke
- School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Hongmin Liu
- School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zhenbo Hu
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Shandong Weifang Medical University, China
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
2
|
Yin L, Wan L, Zhang Y, Hua S, Shao X. Recent Developments and Evolving Therapeutic Strategies in KMT2A-Rearranged Acute Leukemia. Cancer Med 2024; 13:e70326. [PMID: 39428967 PMCID: PMC11491690 DOI: 10.1002/cam4.70326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Rearrangements of the histone-lysine-N-methyltransferase (KMT2A), previously referred to as mixed-lineage leukemia (MLL), are among the most common chromosomal abnormalities in patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), involving numerous different fusion partners. KMT2A-rearranged (KMT2A-r) leukemia is characterized by a rapid onset, aggressive progression, and significantly worse prognosis compared to non-KMT2A-r leukemias. Even with contemporary chemotherapeutic treatments and hematopoietic stem cell transplantations (HSCT), patients with KMT2A-r leukemia typically experience poor outcomes and limited responses to these therapies. OBJECTIVES This review aims to consolidate recent studies on the general gene characteristics and associated mechanisms of KMT2A-r acute leukemia, as well as the cytogenetics, immunophenotype, clinical presentation, and risk stratification of both KMT2A-r-AML and KMT2A-r-ALL. Particularly, the treatment targets in KMT2A-r acute leukemia are examined. METHODS A comprehensive review was carried out by systematically synthesizing existing literature on PubMed, using the combination of the keywords 'KMT2A-rearranged acute leukemia', 'lymphoblastic leukemia', 'myeloid leukemia', and 'therapy'. The available studies were screened for selection based on quality and relevance. CONCLUSIONS Studies indicate that KMT2A rearrangements are present in over 70% of infant leukemia cases, approximately 10% of adult AML cases, and numerous instances of secondary acute leukemias, making it a disease of critical concern to clinicians and researchers alike. The future of KMT2A-r acute leukemia research is characterized by an expanding knowledge of the disease's biology, with an emphasis on personalized therapies, immunotherapies, genomic advancements, and innovative therapeutic combinations. The overarching aim is to enhance patient outcomes, lessen the disease burden, and elevate the quality of life for those affected. Ongoing research and clinical trials in this area continue to offer promising opportunities for refining treatment strategies and improving patient prognosis.
Collapse
Affiliation(s)
- Lei Yin
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| | - Lin Wan
- Department of PediatricsThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Youjian Zhang
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| | - Shenghao Hua
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| | - Xuejun Shao
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
3
|
Guo X, Huang G, Qiu D, He H, Niu X, Guo Z, Ye Y. RPS6KA1 is a histone acetylation-related oncoprotein in acute myeloid leukemia which is targeted by afzelin. BMC Cancer 2024; 24:1189. [PMID: 39333927 PMCID: PMC11438311 DOI: 10.1186/s12885-024-12886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Histone acetylation plays a critical role in the progression of acute myeloid leukemia (AML). This study aimed to explore the prognostic significance and biological implications of histone acetylation-related genes in AML and to identify potential oncoproteins and therapeutic compounds. METHODS Genes associated with AML and histone acetylation were identified using the TCGA-LAML and IMEx Interactome databases. A histone acetylation-related risk model was developed using the least absolute shrinkage and selection operator method. The prognostic value of the model was evaluated through Kaplan-Meier survival analysis, time-dependent receiver operating characteristic curve, univariate and multivariate Cox regression, and nomogram calibration. Key genes were identified using random forest, support vector machine, and multivariate Cox analysis. Molecular docking was employed to assess the binding affinity between ribosomal protein S6 kinase A1 (RPS6KA1) and potential compounds. Furthermore, the effects of RPS6KA1 and afzelin on the malignant behaviors and downstream pathways of AML cells were validated through in vitro experiments. RESULTS A risk model composed of 6 genes, including HDAC6, CREB3, KLF13, GOLGA2, RPS6KA1 and ZMIZ2, was established, demonstrating strong prognostic predictive capability. Among these, RPS6KA1 emerged as a key risk factor linked to histone acetylation status in AML. Elevated RPS6KA1 expression was observed in AML samples and was associated with poor prognosis. RPS6KA1 knockdown suppressed AML cell proliferation, migration, and invasion, induced G0/G1 phase arrest, and promoted apoptosis. Additionally, RPS6KA1 was identified as a potential target for afzelin, which exhibited anti-AML activity by inactivating RPS6KA1. CONCLUSION Histone acetylation status is closely associated with AML patient prognosis. RPS6KA1 acts as an oncoprotein in AML, facilitating disease progression. Afzelin may represent a novel therapeutic agent for AML by targeting RPS6KA1, which requires validation by clinical trials.
Collapse
Affiliation(s)
- Xiaojuan Guo
- Department of Hematology, Zhongshan People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Guinian Huang
- Department of Hematology, Zhongshan People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Dafa Qiu
- Department of Hematology, Zhongshan People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Huiqing He
- Department of Hematology, Zhongshan People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Xiaomin Niu
- Department of Hematology, Zhongshan People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Ziwen Guo
- Department of Hematology, Zhongshan People's Hospital, Zhongshan, 528403, Guangdong, China.
| | - Yongbin Ye
- Department of Hematology, Zhongshan People's Hospital, Zhongshan, 528403, Guangdong, China.
| |
Collapse
|
4
|
Bruserud Ø, Selheim F, Hernandez-Valladares M, Reikvam H. Monocytic Differentiation in Acute Myeloid Leukemia Cells: Diagnostic Criteria, Biological Heterogeneity, Mitochondrial Metabolism, Resistance to and Induction by Targeted Therapies. Int J Mol Sci 2024; 25:6356. [PMID: 38928061 PMCID: PMC11203697 DOI: 10.3390/ijms25126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
We review the importance of monocytic differentiation and differentiation induction in non-APL (acute promyelocytic leukemia) variants of acute myeloid leukemia (AML), a malignancy characterized by proliferation of immature myeloid cells. Even though the cellular differentiation block is a fundamental characteristic, the AML cells can show limited signs of differentiation. According to the French-American-British (FAB-M4/M5 subset) and the World Health Organization (WHO) 2016 classifications, monocytic differentiation is characterized by morphological signs and the expression of specific molecular markers involved in cellular communication and adhesion. Furthermore, monocytic FAB-M4/M5 patients are heterogeneous with regards to cytogenetic and molecular genetic abnormalities, and monocytic differentiation does not have any major prognostic impact for these patients when receiving conventional intensive cytotoxic therapy. In contrast, FAB-M4/M5 patients have decreased susceptibility to the Bcl-2 inhibitor venetoclax, and this seems to be due to common molecular characteristics involving mitochondrial regulation of the cellular metabolism and survival, including decreased dependency on Bcl-2 compared to other AML patients. Thus, the susceptibility to Bcl-2 inhibition does not only depend on general resistance/susceptibility mechanisms known from conventional AML therapy but also specific mechanisms involving the molecular target itself or the molecular context of the target. AML cell differentiation status is also associated with susceptibility to other targeted therapies (e.g., CDK2/4/6 and bromodomain inhibition), and differentiation induction seems to be a part of the antileukemic effect for several targeted anti-AML therapies. Differentiation-associated molecular mechanisms may thus become important in the future implementation of targeted therapies in human AML.
Collapse
MESH Headings
- Humans
- Cell Differentiation
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Mitochondria/metabolism
- Monocytes/metabolism
- Monocytes/pathology
- Drug Resistance, Neoplasm/genetics
- Molecular Targeted Therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
5
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Górecki M, Kozioł I, Kopystecka A, Budzyńska J, Zawitkowska J, Lejman M. Updates in KMT2A Gene Rearrangement in Pediatric Acute Lymphoblastic Leukemia. Biomedicines 2023; 11:biomedicines11030821. [PMID: 36979800 PMCID: PMC10045821 DOI: 10.3390/biomedicines11030821] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
The KMT2A (formerly MLL) encodes the histone lysine-specific N-methyltransferase 2A and is mapped on chromosome 11q23. KMT2A is a frequent target for recurrent translocations in acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), or mixed lineage (biphenotypic) leukemia (MLL). Over 90 KMT2A fusion partners have been identified until now, including the most recurring ones—AFF1, MLLT1, and MLLT3—which encode proteins regulating epigenetic mechanisms. The presence of distinct KMT2A rearrangements is an independent dismal prognostic factor, while very few KMT2A rearrangements display either a good or intermediate outcome. KMT2A-rearranged (KMT2A-r) ALL affects more than 70% of new ALL diagnoses in infants (<1 year of age), 5–6% of pediatric cases, and 15% of adult cases. KMT2A-rearranged (KMT2A-r) ALL is characterized by hyperleukocytosis, a relatively high incidence of central nervous system (CNS) involvement, an aggressive course with early relapse, and early relapses resulting in poor prognosis. The exact pathways of fusions and the effects on the final phenotypic activity of the disease are still subjects of much research. Future trials could consider the inclusion of targeted immunotherapeutic agents and prioritize the identification of prognostic factors, allowing for the less intensive treatment of some infants with KMT2A ALL. The aim of this review is to summarize our knowledge and present current insight into the mechanisms of KMT2A-r ALL, portray their characteristics, discuss the clinical outcome along with risk stratification, and present novel therapeutic strategies.
Collapse
Affiliation(s)
- Mateusz Górecki
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ilona Kozioł
- Student Scientific Society of the Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agnieszka Kopystecka
- Student Scientific Society of the Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Julia Budzyńska
- Student Scientific Society of the Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
7
|
Histone Deacetylase Inhibitor I3 Induces the Differentiation of Acute Myeloid Leukemia Cells with t (8; 21) or MLL Gene Translocation and Leukemic Stem-Like Cells. JOURNAL OF ONCOLOGY 2022; 2022:3345536. [PMID: 36072977 PMCID: PMC9441378 DOI: 10.1155/2022/3345536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disorder characterized by the clonal expansion and differentiation arrest of leukemic cells in peripheral blood and bone marrow. Though the treatment using cytarabine-based protocol for AML patients with t (8; 21) translocation has improved the 5-year overall survival rate, drug resistance continues to be the principal limiting factor for the cure of the disease. In addition, very few AML patients with mixed lineage leukemia gene rearrangements (MLLr) have a desirable outcome. This study evaluated the cell differentiation effect of a potent HDAC (histone deacetylase) inhibitor, I3, and its possible mechanism on the AML cells with t (8; 21) translocation or MLLr and leukemic stem-like cells (Kasumi-1, KG-1, MOLM-13, and THP-1). I3 exhibited efficient anti-proliferative activity on these cells via promoting cell differentiation, accompanied by the cell cycle exit at G0/G1. Importantly, I3 showed the properties of HDAC inhibition, as assessed by the acetylation of histones H3 and H4, which resulted in blocking the activation of the VEGF (vascular endothelial growth factor)-MAPK (mitogen-activated protein kinase) signaling pathway in the Kasumi-1 cell line. These data demonstrate that I3 could be a potent chromatin-remodeling agent to surmount the differentiation block in AML patients, including those with t (8; 21) translocation or MLLr, and could be a potent and selective agent for AML treatment.
Collapse
|