1
|
de Souza Stork S, Mathias K, Gava F, Joaquim L, Dos Santos D, Tiscoski ADB, Bonfante S, Strickert YR, Machado RS, Martins HM, Chaves JS, Generoso J, Danielski LG, Giustina AD, Scussel R, Bitencourt R, Mack JM, de Souza Goldim MP, Machado-de-Ávila RA, Barichello T, Bobinski F, Petronilho F. Full-spectrum Cannabis sativa extract enhances gut-peripheral organ integrity after experimental ischemic stroke. Inflammopharmacology 2025:10.1007/s10787-025-01775-1. [PMID: 40389682 DOI: 10.1007/s10787-025-01775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 04/24/2025] [Indexed: 05/21/2025]
Abstract
OBJECTIVE This study aims to investigate the impact of full-spectrum Cannabis sativa extract (FSC) treatment on gut and peripheral organ protection after ischemic stroke. MAIN METHODS Male Wistar rats were subjected to 60-min middle cerebral artery occlusion (MCAO) or sham surgery, and received FSC (15 or 30 mg/kg) or coconut oil by gavage at different time points post-MCAO. After 72 h, neurological score, infarct volume, blood cell count, thymus, spleen and adrenal gland size and weight, serum corticosterone, intestinal permeability, oxidative stress, and inflammatory cytokines in peripheral organs were assessed. KEY FINDINGS The results show a significant improvement in neurological deficits, suggesting the therapeutic potential of FSC in post-stroke recovery. Additionally, a reduction in body mass, a decrease in blood cells related to the immune response, and atrophy of lymphoid organs, lower corticosterone levels, and reduced intestinal permeability were observed. FSC treatment also demonstrated a crucial role in protecting against oxidative stress and post-stroke lung inflammation. SIGNIFICANCE The discovery of the positive impacts of FSC in this study represents an entry point for new explorations and perspectives within this field. With latent potential, these findings have the power to shape clinical research, especially in the realm of neurodegenerative diseases and innovative therapies. Therefore, the results highlight the promising role of FSC, paving the way for more effective and transformative clinical interventions.
Collapse
Affiliation(s)
- Solange de Souza Stork
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
- Laboratory of Behavioral Neuroscience (LabNeC), Postgraduate Program, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - Fernanda Gava
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - Larissa Joaquim
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - David Dos Santos
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Behavioral Neuroscience (LabNeC), Postgraduate Program, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - Yasmin Ribeiro Strickert
- Laboratory of Behavioral Neuroscience (LabNeC), Postgraduate Program, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Richard Simon Machado
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - Helena Mafra Martins
- Laboratory of Experimental Neuroscience (LaNEx), Postgraduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Pedra Branca, Palhoça, SC, Brazil
| | - Jéssica Schaefer Chaves
- Laboratory of Experimental Neuroscience (LaNEx), Postgraduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Pedra Branca, Palhoça, SC, Brazil
| | - Jaqueline Generoso
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil
| | - Lucineia Gainski Danielski
- Department of Surgery, Burn, Trauma and Acute Care Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Amanda Della Giustina
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Rahisa Scussel
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciúma, Brazil
| | - Rafael Bitencourt
- Laboratory of Behavioral Neuroscience (LabNeC), Postgraduate Program, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Josiel Mileno Mack
- Laboratory of Experimental Neuroscience (LaNEx), Postgraduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Pedra Branca, Palhoça, SC, Brazil
| | | | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciúma, Brazil
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Franciane Bobinski
- Laboratory of Experimental Neuroscience (LaNEx), Postgraduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Pedra Branca, Palhoça, SC, Brazil
| | - Fabricia Petronilho
- Health Sciences Unit, Laboratory of Experimental Neurology and Cerebrovascular Diseases, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
2
|
McHale-Owen H, Faller KME, Chaytow H, Gillingwater TH. Phosphoglycerate kinase 1 as a therapeutic target in neurological disease. Trends Mol Med 2025:S1471-4914(25)00059-0. [PMID: 40234116 DOI: 10.1016/j.molmed.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
Phosphoglycerate kinase 1 (PGK1) is a highly conserved enzyme that catalyzes the initial ATP-producing step in glycolysis. Improving cellular energy production by increasing PGK1 activity may be beneficial in multiple neurological conditions where cell metabolism is dysregulated, including Parkinson's disease (PD) and motor neuron disease (MND). This review examines recent evidence that suggests increasing PGK1 activity may be beneficial in multiple neurological conditions and discusses the current challenges surrounding the development of PGK1-focused therapies. PGK1 has considerable therapeutic potential, but novel PGK1 activators are needed to maximize the benefit for patients.
Collapse
Affiliation(s)
- Harriet McHale-Owen
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Kiterie M E Faller
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Helena Chaytow
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Li X, Zhao Z, Ke Y, Jiang Y, Liu Y, Liu Z. Links Between Cellular Energy Metabolism and Pain Sensation. Anesth Analg 2025; 140:616-627. [PMID: 39110636 PMCID: PMC11805490 DOI: 10.1213/ane.0000000000007096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 02/09/2025]
Abstract
One of the functions of organism cells is to maintain energy homeostasis to promote metabolism and adapt to the environment. The 3 major pathways of cellular energy metabolism are glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). Neurons, astrocytes, and microglia are crucial in allodynia, hyperalgesia, and sensitization in nociceptive pathways. This review focused on these 3 major cellular energy metabolism pathways, aiming to elucidate the relationship between neurocyte and pain sensation and present the reprogramming of energy metabolism on pain, as well as the cellular and molecular mechanism underlying various forms of pain. The clinical and preclinical drugs involved in pain treatment and molecular mechanisms via cellular energy metabolism were also discussed.
Collapse
Affiliation(s)
- Xiongjuan Li
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhao Zhao
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuwen Ke
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yonghan Jiang
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuqiang Liu
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhiheng Liu
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| |
Collapse
|
4
|
Guo H, Li Y, Wang S, Yang Y, Xu T, Zhao J, Wang J, Zuo W, Wang P, Zhao G, Wang H, Hou W, Dong H, Cai Y. Dysfunction of astrocytic glycophagy exacerbates reperfusion injury in ischemic stroke. Redox Biol 2024; 74:103234. [PMID: 38861834 PMCID: PMC11215420 DOI: 10.1016/j.redox.2024.103234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Glycophagy has evolved from an alternative glycogen degradation pathway into a multifaceted pivot to regulate cellular metabolic hemostasis in peripheral tissues. However, the pattern of glycophagy in the brain and its potential therapeutic impact on ischemic stroke remain unknown. Here, we observed that the dysfunction of astrocytic glycophagy was caused by the downregulation of the GABA type A receptor-associated protein like 1 (GABARAPL1) during reperfusion in ischemic stroke patients and mice. PI3K-Akt pathway activation is involved in driving GABARAPL1 downregulation during cerebral reperfusion. Moreover, glycophagy dysfunction-induced glucosamine deficiency suppresses the nuclear translocation of specificity protein 1 and TATA binding protein, the transcription factors for GABARAPL1, by decreasing their O-GlcNAcylation levels, and accordingly feedback inhibits GABARAPL1 in astrocytes during reperfusion. Restoring astrocytic glycophagy by overexpressing GABARAPL1 decreases DNA damage and oxidative injury in astrocytes and improves the survival of surrounding neurons during reperfusion. In addition, a hypocaloric diet in the acute phase after cerebral reperfusion can enhance astrocytic glycophagic flux and accelerate neurological recovery. In summary, glycophagy in the brain links autophagy, metabolism, and epigenetics together, and glycophagy dysfunction exacerbates reperfusion injury after ischemic stroke.
Collapse
Affiliation(s)
- Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yumeng Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongheng Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tiantian Xu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pengju Wang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yanhui Cai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Xu M, Zhang J, Shi Z, He Z, Zhao Y, Ling X, Wang W, Gong M. Amelioration of nitroglycerin-induced migraine in mice via Wuzhuyu decoction: Inhibition of the MZF1/PGK1 pathway and activation of NRF2 antioxidant response. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117930. [PMID: 38373662 DOI: 10.1016/j.jep.2024.117930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Migraine, a chronic and intricate disorder, manifests as recurrent episodic headaches accompanied by various neurological symptoms. Wuzhuyu Decoction (WZYD) is a traditional Chinese medical formula with promising effects in treating migraines; however, its underlying mechanisms have not yet been clarified. AIM OF STUDY The study aimed to evaluate WZYD's effectiveness in migraine treatment and investigate the potential mechanism of WZYD's effects on migraine and oxidative stress. MATERIALS AND METHODS Behavior tests and immunofluorescence assay for the intensity of migraine markers to assess the migraine-relieving effect of WZYD after chronic migraine model induced by nitroglycerin in mice. The impacts of WZYD on oxidative stress-related markers, including reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase 1 (HO1), and NAD (P)H quinone oxidoreductase 1 (NQO1) in brain tissue were examined. In addition, protein expression or mRNA levels of the MZF1/PGK1 were detected using Western blot or PCR, respectively. Finally, the MZF1 overexpression vector was constructed to the higher level of MZF1. The MZF1/PGK1 signaling pathway expression was evaluated by markers of oxidative stress including NRF2 and others in this series of experiments. RESULTS Through murine model experimentation, we observed that WZYD effectively alleviates migraine symptoms, signifying its therapeutic efficacy. Mechanistically, WZYD emerges as a potent activator of the NRF2, acting as a robust defense against oxidative stress. In vitro investigations demonstrated that WZYD combats oxidative stress and curbs cell apoptosis induced by these detrimental conditions. Furthermore, by suppressing the transcriptional expression of PGK1, an influential player in the NRF2 pathway, WZYD effectively activates NRF2 signaling. Intriguingly, we have identified MZF1 as the mediator orchestrating the regulation of the PGK1/NRF2 pathway by WZYD. CONCLUSION The study confirms the effectiveness of WZYD in alleviating migraine symptoms. Mechanistically, WZYD activated the NRF2 signaling pathway; moreover, the action of WZYD involved the down-regulation of PGK1 mediated by MZF1, which promoted the activation of the NRF2 pathway. This study advances our understanding of the intricate mechanisms driving WZYD's efficacy, paving the way for novel treatments in migraine management.
Collapse
Affiliation(s)
- Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu Province, China.
| | - Jiayan Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Zhenhua Shi
- Department of Neurosurgery, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Nantong University, Changshu, 215500, Jiangsu Province, China.
| | - Ziyang He
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu Province, China.
| | - Yijing Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Xiaoyang Ling
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu Province, China.
| | - Wenhua Wang
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu Province, China.
| | - Mingjie Gong
- Department of Neurosurgery, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Nantong University, Changshu, 215500, Jiangsu Province, China.
| |
Collapse
|
6
|
Dorahy G, Chen JZ, Balle T. Computer-Aided Drug Design towards New Psychotropic and Neurological Drugs. Molecules 2023; 28:1324. [PMID: 36770990 PMCID: PMC9921936 DOI: 10.3390/molecules28031324] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Central nervous system (CNS) disorders are a therapeutic area in drug discovery where demand for new treatments greatly exceeds approved treatment options. This is complicated by the high failure rate in late-stage clinical trials, resulting in exorbitant costs associated with bringing new CNS drugs to market. Computer-aided drug design (CADD) techniques minimise the time and cost burdens associated with drug research and development by ensuring an advantageous starting point for pre-clinical and clinical assessments. The key elements of CADD are divided into ligand-based and structure-based methods. Ligand-based methods encompass techniques including pharmacophore modelling and quantitative structure activity relationships (QSARs), which use the relationship between biological activity and chemical structure to ascertain suitable lead molecules. In contrast, structure-based methods use information about the binding site architecture from an established protein structure to select suitable molecules for further investigation. In recent years, deep learning techniques have been applied in drug design and present an exciting addition to CADD workflows. Despite the difficulties associated with CNS drug discovery, advances towards new pharmaceutical treatments continue to be made, and CADD has supported these findings. This review explores various CADD techniques and discusses applications in CNS drug discovery from 2018 to November 2022.
Collapse
Affiliation(s)
- Georgia Dorahy
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Jake Zheng Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|