1
|
Sun Q, Li X, Wang G, Wang X, Xing B, Xun Z, Lu N, Li Z. Population pharmacokinetics of colistin sulfate in critically ill patients based on NONMEM. Sci Rep 2025; 15:18295. [PMID: 40419663 DOI: 10.1038/s41598-025-03503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025] Open
Abstract
As the last defense against multidrug-resistant gram-negative bacteria, colistin sulfate's clinical use, which is often empirical, risks resistance and adverse reactions. This study aimed to develop a population pharmacokinetic (PPK) model of colistin sulfate for critically ill patients and determine the optimal dosing regimen. This retrospective study included 204 critically ill patients. We used a validated LC-MS/MS method to measure its plasma concentrations and RIFLE criteria for nephrotoxicity evaluation. NONMEM developed PPK models. Monte Carlo simulations set dosing regimens based on the probability of target attainment (PTA). A two-compartment model adequately described the data, creatinine clearance and weight were covariates for elimination rate and central volume, respectively. Only 11.8% had nephrotoxicity. With Monte Carlo simulations, all regimens except the maintenance dose of 0.5 MU administered every 12 h achieved > 90% PTA at the minimum inhibitory concentration (MIC) ≤ 0.5 mg/L. However, at MIC > 0.5 mg/L, the routine regimen resulted in insufficient exposure. Based on our PPK model, the dose of intravenous colistin sulfate should be adjusted according to creatinine clearance (CrCL) and weight. For critically ill patients with infections, under the conventional treatment regimens, when the MIC is ≥ 1 mg/L, it is difficult for patients to achieve the ideal therapeutic effect in terms of exposure dose. When CrCL is below 10 ml/min, the regimen of 1 MU every 8 h used could cause the potential for increasing nephrotoxicity risk, which is significantly concerned.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Pharmacy, Beijing Electric Power Hospital of State Grid Co. of China, Capital Medical University Electric Teaching Hospital, Beijing, China
| | - Xiaojing Li
- Department of Pharmacy, Beijing Electric Power Hospital of State Grid Co. of China, Capital Medical University Electric Teaching Hospital, Beijing, China
| | - Genzhu Wang
- Department of Pharmacy, Beijing Electric Power Hospital of State Grid Co. of China, Capital Medical University Electric Teaching Hospital, Beijing, China
| | - Xiaoying Wang
- Department of Pharmacy, Beijing Electric Power Hospital of State Grid Co. of China, Capital Medical University Electric Teaching Hospital, Beijing, China
| | - Baiqian Xing
- Department of Pharmacy, Beijing Electric Power Hospital of State Grid Co. of China, Capital Medical University Electric Teaching Hospital, Beijing, China
| | - Zhikun Xun
- Department of Pharmacy, Beijing Electric Power Hospital of State Grid Co. of China, Capital Medical University Electric Teaching Hospital, Beijing, China
| | - Nianfang Lu
- ICU, Beijing Electric Power Hospital of State Grid Co. of China, Capital Medical University Electric Teaching Hospital, Beijing, China.
| | - Zhongdong Li
- Department of Pharmacy, Beijing Electric Power Hospital of State Grid Co. of China, Capital Medical University Electric Teaching Hospital, Beijing, China.
| |
Collapse
|
2
|
Liu H, Tang L, Zheng L, Fu Y, Qian M, Ouyang C, Tao N, Ou S, He Y. Colistin sulfate versus polymyxin B for the treatment of infections caused by carbapenem-resistant Acinetobacter baumannii: a multicenter retrospective cohort study. Front Pharmacol 2025; 16:1540925. [PMID: 40438608 PMCID: PMC12116560 DOI: 10.3389/fphar.2025.1540925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/09/2025] [Indexed: 06/01/2025] Open
Abstract
Background Polymyxins are the last line of defense against carbapenem-resistant Gram-negative bacilli infections. However, the efficacy of polymyxins against the independent risk factor of bacterial species is unknown. We aimed to compare the efficacy and safety of colistin sulfate (CS) and polymyxin B (PMB) for carbapenem-resistant Acinetobacter baumannii (CRAB) infections. Methods We carried out a retrospective multicenter study that included patients with CRAB infections at three tertiary hospitals in Guizhou province, China, from 1 Jan 2020 to 30 Jun 2024. Patients were grouped into the CS group and PMB group. The main outcomes were all-cause 28-day mortality and clinical failure rate. The secondary outcomes included the microbiological cure rate, duration of CS or PMB treatment, and length of hospital stay. Safety was evaluated based on the rates of adverse drug reactions. Results A total of 140 patients were included, with 58 patients in the CS group and 82 patients in the PMB group. All-cause 28-day mortality was 32.8% in the CS group and 37.8% in the PMB group (adjusted HR = 0.73, 95% CI 0.38-1.37, p = 0.316), and the clinical failure rate was 48.3% and 56.1% (adjusted OR = 0.64, 95% CI 0.29-1.39, p = 0.262) in the CS group and PMB group, respectively. There were no significant differences in any of the secondary outcomes. The incidence of acute kidney injury (AKI) in the CS group was lower than that in the PMB group (5.2% vs. 19.5%). Compared to the PMB group, the adjusted odds ratio of AKI was 0.24 (95% Cl 0.06-0.96, p = 0.044) for the CS group. Conclusion Our results suggest that CS is similarly effective to PMB for CRAB infections but it is associated with fewer safety concerns than PMB. This clinical research provides significant information on the efficacy and safety of CS and PMB for CRAB infections.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li Tang
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Liang Zheng
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuanyuan Fu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Mingjiang Qian
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Canghong Ouyang
- Department of Pharmacy, First People’s Hospital of ZunYi, Zunyi, Guizhou, China
| | - Na Tao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shuiping Ou
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong He
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Zamri PJ, Lim SMS, Sime FB, Roberts JA, Abdul-Aziz MH. A Systematic Review of Pharmacokinetic Studies of Colistin and Polymyxin B in Adult Populations. Clin Pharmacokinet 2025; 64:655-689. [PMID: 40246790 PMCID: PMC12064624 DOI: 10.1007/s40262-025-01488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND AND OBJECTIVE The pharmacokinetics of polymyxins are highly variable and conventional dosing regimens may likely lead to sub-optimal exposures and outcomes, particularly in critically ill patients with multi-drug-resistant infections. The aim of this systematic review is to describe the published pharmacokinetic data and to investigate variables that have been shown to affect the pharmacokinetics of colistimethate sodium, colistin, and polymyxin B in adult populations. METHODS Sixty studies were identified. A total of 27 and 33 studies described the pharmacokinetics of colistin and polymyxin B, respectively. RESULTS The most common dosing regimen for colistimethate sodium was a loading dose of 9 MIU, followed by 9 MIU/day in two to three divided doses, while for polymyxin B, a loading dose of 100-200 mg, followed by 50-100 mg every 12 h was given. Studies that used colistin sulfate instead of colistimethate sodium reported lower inter-individual variability, which may be attributed to the formulation of colistin sulfate being an active drug. The volume of distribution for colistin is typically lower in healthy individuals than in critically ill patients, owing to variations in physiological and pathological conditions. The clearance of colistimethate sodium in critically ill patients not undergoing dialysis was higher, around 13 L/h, compared with those receiving continuous renal replacement therapy, where clearance ranged from 2.31 to 8.23 L/h. In patients receiving continuous renal replacement therapy, clearance of colistin was higher compared with colistimethate sodium (2.06-6.63 L/h and 1.57-3.85 L/h, respectively). Colistin protein binding in critically ill patients ranged from 51% to 79%. The volume of distribution of polymyxin B was similar between critically ill and acutely ill patients, with range of 6.3-33.1 L and 6.22-38.6 L, respectively. Clearance of polymyxin B was also almost similar between critically ill and acutely ill patients (range of 1.27-2.32 L/h). There were two studies that reported free drug concentrations instead of the total drug concentrations of polymyxin B. In critically ill patients, protein binding ranged from 48.8% to 92.4% for polymyxin B. Creatinine clearance was the most common patient characteristic associated with altered clearance of colistimethate sodium and/or colistin, and polymyxin B. CONCLUSIONS Critically ill patients exhibit complex pharmacokinetics for colistin and polymyxin B, influenced by renal function, body weight, and clinical factors such as acute kidney injury, augmented renal clearance, serum albumin, and liver function. These factors necessitate individualized dosing adjustments to avoid toxicity and achieve therapeutic efficacy. Model-informed precision dosing provides a promising approach to optimize their use by integrating population pharmacokinetic parameters, patient-specific variables, and therapeutic drug monitoring, ensuring a balance between efficacy, safety, and resistance prevention.
Collapse
Affiliation(s)
- Puteri Juanita Zamri
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Department of Pharmacy, Hospital Selayang, Ministry of Health Malaysia, Selangor, Malaysia.
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Sazlyna Mohd Sazlly Lim
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Fekade Bruck Sime
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jason A Roberts
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women'S Hospital, Brisbane, QLD, Australia
- Department of Pharmacy, Royal Brisbane and Women'S Hospital, Brisbane, QLD, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Herston Infectious Diseases Institute (Heidi), Metro North Health, Brisbane, QLD, Australia
| | - Mohd Hafiz Abdul-Aziz
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| |
Collapse
|
4
|
Huang T, Luo Y, Wu Y, Niu L, Xiao Y, Wu T, Chen X, Liu Y, Lu J, Zhu D, Liu T. Population pharmacokinetics of colistin sulfate in patients on continuous veno-venous hemodiafiltration. Sci Prog 2025; 108:368504251325334. [PMID: 40033936 PMCID: PMC11877486 DOI: 10.1177/00368504251325334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
OBJECTIVE The aim of this study is to establish a population pharmacokinetic (PK) model for patients undergoing continuous veno-venous hemodiafiltration (CVVHDF) and optimize the dosing regimen of colistin sulfate. METHODS A prospective observational study in a single center was conducted on patients who were administrated with colistin sulfate and CVVHDF for at least 48 h. Blood samples were obtained prior to dosing and four to six blood samples (primarily C0.5h, C1h, C2h, C4h, and C6h) after dosing. The blood concentration of colistin sulfate was determined by ultra-high performance liquid chromatography-tandem mass spectrometry assay. The NONMEM program was used to establish the population PK model and perform Monte Carlo simulations. The predictability and stability of the model were internally evaluated by the goodness of fit plots, visual prediction check, and bootstraps. RESULTS A total of 86 plasma concentrations from 20 patients were used for population PK modeling. A two-compartment model with first-order linear elimination best described the population PK characteristics of colistin sulfate. Cystatin C (CysC) and body weight (WT) were identified as covariates for clearance (CL). Internal evaluation results showed that the final model had good stability and prediction performance. Monte Carlo simulations showed that only when the body WT was 50 kg with CysC ≥3.07 mg/l, and when the body WT was 65 kg with CysC = 5.11 mg/l, and minimum inhibitory concentration (MIC) = 0.25 mg/l, the target attainment probability (PTA) of the daily dose of 1.5 million U regimen was ≥90%. All treatment regimens fail to achieve the target PTA when MIC = 1 mg/l. CONCLUSIONS With the decrease of CysC levels and the increase of WT, the dose of colistin sulfate may need to be increased. It may be prudent for colistin sulfate to consider an initial dose doubling and subsequent maintenance dosing regimen of 200-225 million unit daily, administered in 2-3 divided doses, to attain PTA standard. This study was registered at the Chinese Clinical Trial Registry (www.chictr.org.cn) (trial registration number ChiCTR2300072191).
Collapse
Affiliation(s)
- Tianmin Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yilin Luo
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Niu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Xiao
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tingqing Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xin Chen
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongjun Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiejiu Lu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Donglan Zhu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Taotao Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Huang Y, Liao M, Hu X, Hu H, Gong H. Advances in the clinical treatment of multidrug-resistant pathogens using polymyxins. J Antimicrob Chemother 2024; 79:3210-3229. [PMID: 39351975 DOI: 10.1093/jac/dkae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVES Polymyxins are a vital class of antibiotics used to combat multidrug-resistant Gram-negative bacteria. However, their use is limited due to potential nephrotoxicity and the availability of alternative antibiotics. This review aims to examine the properties of polymyxins and the clinical advances in their use for treating infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). METHODS This review analyses literature on polymyxin properties and various clinical approaches, including intravenous drip infusion, nebulized or dry powder inhalation, and ointment application. Treatment efficacy in terms of bacterial eradication, cure rate and mortality rate are reviewed and evaluated. RESULTS Polymyxins have been reintroduced to treat critical infections due to the increasing prevalence of CR-GNB. Clinical trials and studies have confirmed that polymyxins can effectively treat CR-GNB infections when the formulation and administration are appropriate, with acceptable levels of nephrotoxicity. CONCLUSIONS In the future, the development of polymyxin formulations will aim to improve their clinical effectiveness while reducing toxicity and side effects and preventing the emergence of polymyxin-resistant strains. Enhanced efficacy and minimized potential side effects can be achieved by developing new polymyxin-delivery systems that provide a smart and controlled release or customized patient administration.
Collapse
Affiliation(s)
- Yizhen Huang
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Honghua Hu
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoning Gong
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Ma YC, Sun YQ, Wu X, Wang YJ, Yang XL, Gu JJ. Clinical Effectiveness and Safety of Colistin Sulphate in Treating Infections Caused by Carbapenem-Resistant Organisms and Analysis of Influencing Factors. Infect Drug Resist 2024; 17:3793-3804. [PMID: 39247753 PMCID: PMC11380488 DOI: 10.2147/idr.s473200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Objective To assess the efficacy and safety of colistin sulfate in treating infections caused by carbapenem-resistant organisms (CRO) and to analyze potential factors impacting its effectiveness. Methods In this retrospective study, medical records of CRO-infected patients from June 2020 to June 2023 were analyzed, divided into effective and ineffective treatment groups, and compared for clinical outcomes and adverse reactions. Multifactorial logistic regression and ROC curve analysis were used to identify influencing factors. Results The study included 226 patients, with 124 in the effective treatment group and 102 in the ineffective group. A total of 293 CRO strains were cultured. The clinical efficacy rate of colistin sulfate was 54.87%, the microbiological efficacy rate 46.46%, and the hospital mortality rate 20.80%, with nephrotoxicity observed in 11.50% of patients. Multifactorial analysis identified APACHE II scores and vasoactive drug use as independent predictors of ineffective treatment, while treatment duration and albumin levels predicted effective treatment. ROC analysis indicated that albumin levels >34 g/L, APACHE II scores <13, and treatment duration >10 days correlated with better clinical efficacy. Conclusion Colistin sulfate is both safe and effective in clinical settings. Factors such as treatment duration, albumin levels, APACHE II scores, and vasoactive drug use independently affect its clinical efficacy, providing valuable guidance for its informed clinical application.
Collapse
Affiliation(s)
- Ying-Chao Ma
- Department of Pharmacy, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Ya-Qing Sun
- College of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Xia Wu
- Department of Pharmacy, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Yong-Jing Wang
- Department of Pharmacy, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Xiu-Ling Yang
- Department of Pharmacy, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Jian-Jun Gu
- Department of Cardiac Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| |
Collapse
|
7
|
Yang QJ, Xiang BX, Song MH, Yang CY, Liang JH, Xie YL, Zuo XC. Acute kidney injury with intravenous colistin sulfate compared with polymyxin B in critically ill patients: A real-world, retrospective cohort study. Pharmacotherapy 2024; 44:631-641. [PMID: 39046197 DOI: 10.1002/phar.4601] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Polymyxins have re-emerged as a last-resort therapeutic option for infections caused by carbapenem-resistant gram-negative bacteria. Nephrotoxicity induced by polymyxins is a significant limitation of its use in the clinic. Polymyxin B and colistin sulfate are two widely used active formulations of polymyxins. However, there is a lack of studies conducting a comparative assessment of nephrotoxicity between the two formulations. This study aimed to compare the nephrotoxicity of polymyxin B and colistin sulfate in critically ill patients. METHODS We conducted a retrospective cohort study among critically ill patients who received intravenous polymyxin B or colistin sulfate for over 48 h from January 2017 to January 2024. The primary outcome was the incidence of acute kidney injury (AKI) associated with polymyxins, and the secondary outcome was 30-day all-cause mortality. Additionally, the risk factors of polymyxins-induced AKI and 30-day all-cause mortality were identified by Cox proportional hazard regression analysis. RESULTS A total of 473 patients were included in this study. The overall incidence of AKI was significantly higher in patients who received polymyxin B compared to those who received colistin sulfate in the unmatched cohort (20.8% vs. 9.0%, p = 0.002) and in the propensity score matching cohort (21.1% vs. 7.0%, p = 0.004), respectively. However, there was no significant difference in 30-day all-cause mortality between the two groups. Polymyxin type, septic shock, and concomitant use of vasopressors were identified as independent risk factors for polymyxin-induced AKI. CONCLUSIONS The prevalence of AKI was higher among patients who received polymyxin B compared to those treated with colistin sulfate. However, there was no significant difference in 30-day all-cause mortality between the two groups. Further prospective, multicenter studies with larger sample sizes are needed to validate these findings.
Collapse
Affiliation(s)
- Qin-Jie Yang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bi-Xiao Xiang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mong-Hsiu Song
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Chien-Yi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Jun-Hao Liang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yue-Liang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Li W, Liu Y, Xiao L, Cai X, Gao W, Xu D, Han S, He Y. Development and validation of a prognostic nomogram to predict 30-day all-cause mortality in patients with CRO infection treated with colistin sulfate. Front Pharmacol 2024; 15:1409998. [PMID: 39101134 PMCID: PMC11294994 DOI: 10.3389/fphar.2024.1409998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
Background Carbapenem-resistant Gram-negative organism (CRO) infection is a critical clinical disease with high mortality rates. The 30-day mortality rate following antibiotic treatment serves as a benchmark for assessing the quality of care. Colistin sulfate is currently considered the last resort therapy against infections caused by CRO. Nevertheless, there is a scarcity of reliable tools for personalized prognosis of CRO infections. This study aimed to develop and validate a nomogram to predict the 30-day all-cause mortality in patients with CRO infection who underwent colistin sulfate treatment. Methods A prediction model was developed and preliminarily validated using CRO-infected patients treated with colistin sulfate at Tongji Hospital in Wuhan, China, who were hospitalized between May 2018 and May 2023, forming the study cohort. Patients admitted to Xianning Central Hospital in Xianning, China, between May 2018 and May 2023 were considered for external validation. Multivariate logistic regression was performed to identify independent predictors and establish a nomogram to predict the occurrence of 30-day all-cause mortality. The receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC), and the calibration curve were used to evaluate model performance. The decision curve analysis (DCA) was used to assess the model clinical utility. Results A total of 170 patients in the study cohort and 65 patients in the external validation cohort were included. Factors such as age, duration of combination therapy, nasogastric tube placement, history of previous surgery, presence of polymicrobial infections, and occurrence of septic shock were independently associated with 30-day all-cause mortality and were used to construct the nomogram. The AUC of the nomogram constructed from the above six factors was 0.888 in the training set. The Hosmer-Lemeshow test showed that the model was a good fit (p = 0.944). The calibration curve of the nomogram was close to the ideal diagonal line. Furthermore, the decision curve analysis demonstrated significantly better net benefit in the model. The external validation proved the reliability of the prediction nomogram. Conclusion A nomogram was developed and validated to predict the occurrence of 30-day all-cause mortality in patients with CRO infection treated with colistin sulfate. This nomogram offers healthcare providers a precise and efficient means for early prediction, treatment management, and patient notification in cases of CRO infection treated with colistin sulfate.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Xiao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuezhou Cai
- Department of Pharmacy, Xianning Central Hospital, Hubei University of Science and Technology, Xianning, China
| | - Weixi Gao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dong Xu
- Department of Infection Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shishi Han
- Yichang Health Technology Information Center, Yichang, China
| | - Yan He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Ma YC, Wu XK, Yang XL, Zhang ZQ. Simultaneous determination of colistin sulfate and tigecycline in human plasma by liquid chromatography-tandem mass spectrometry method. BMC Chem 2024; 18:12. [PMID: 38218863 PMCID: PMC10787398 DOI: 10.1186/s13065-023-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE To establish a high-performance liquid chromatography-tandem mass spectrometry method (HPLC-MS/MS) to simultaneously determine colistin sulfate and tigecycline in human plasma. METHODS Polymyxin B1 internal standard (20 µL) was added into 200 µL of plasma sample. The samples were treated with methanol-5% trichloroacetic acid (50:50, V/V) solution, and the protein precipitation method was adopted for post-injection analysis. The chromatographic column was a Dikma C18 (4.6 mm × 150 mm, 5 μm). For the mobile phase, 0.1% formic acid in aqueous solution was used for phase A, 0.1% formic acid in acetonitrile solution for phase B, and gradient elution was also applied. The flow rate was 0.8 mL/min, the column temperature was 40 °C, and the injection volume was 10 µL; Electrospray ionization and multiple reaction ion monitoring were adopted and scanned by the HPLC-MS/MS positive ion mode. RESULTS The endogenous impurities in the plasma had no interference in the determination of the analytes. There existed a good linear relationship of colistin sulfate within the range of 0.1-10 µg/mL (R2 = 0.9986), with the lower limit of quantification (LLOQ) of 0.1 µg/mL. There existed a good linear relationship of tigecycline within the range of 0.05-5 µg/ mL (R2 = 0.9987), with the LLOQ of 0.05 µg/mL. The intra- and inter-day relative standard deviations of colistin sulfate and tigecycline were both less than 15%, and the accuracy was between 88.21% and 108.24%. The extraction had good stability, the extraction recovery rate was 87.75-91.22%, and the matrix effect was 99.40-105.26%. CONCLUSION This study successfully established a method for simultaneously detecting colistin sulfate and tigecycline plasma concentrations. The method was simple, rapid, and highly sensitive and could be applied for therapeutic medication monitoring.
Collapse
Affiliation(s)
- Ying-Chao Ma
- Department of Pharmacy, Second Hospital of Hebei Medical University, No. 215 of Heping West Road,Xinhua District, Shijiazhuang, 050000, China
| | - Xi-Kun Wu
- Department of Pharmacy, Second Hospital of Hebei Medical University, No. 215 of Heping West Road,Xinhua District, Shijiazhuang, 050000, China
| | - Xiu-Ling Yang
- Department of Pharmacy, Second Hospital of Hebei Medical University, No. 215 of Heping West Road,Xinhua District, Shijiazhuang, 050000, China.
| | - Zhi-Qing Zhang
- Department of Pharmacy, Second Hospital of Hebei Medical University, No. 215 of Heping West Road,Xinhua District, Shijiazhuang, 050000, China.
| |
Collapse
|
10
|
Zheng Z, Shao Z, Lu L, Tang S, Shi K, Gong F, Liu J. Ceftazidime/avibactam combined with colistin: a novel attempt to treat carbapenem-resistant Gram-negative bacilli infection. BMC Infect Dis 2023; 23:709. [PMID: 37864200 PMCID: PMC10589954 DOI: 10.1186/s12879-023-08715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND The rapid global emergence and spread of carbapenem-resistant Gram-negative bacilli (CR-GNB) is recognized as a major public health concern, and there are currently few effective treatments for CR-GNB infection. The aim of this study was to investigate the clinical characteristics and outcomes of patients with CR-GNB infections treated with ceftazidime/avibactam (CAZ/AVI) combined with colistin from October 2019 to February 2023 in China. METHODS A total of 31 patients with CR-GNB infections were retrospectively identified using the electronic medical record system of Zhejiang Provincial People's Hospital. RESULTS Thirty-one patients were treated with CAZ/AVI combined with colistin. Respiratory tract infections (87%) were most common. The common drug-resistant bacteria encompass Klebsiella pneumonia (54.8%), Acinetobacter baumannii (29.0%), and Pseudomonas aeruginosa (16.1%). The 30-day mortality rate was 29.0%, and the 7-day microbial clearance rate was 64.5%. The inflammatory marker CRP changes, but not PCT and WBC, were statistically significant on days 7 and 14 after combination therapy. There were seven patients developing acute renal injury (AKI) after combination therapy and treating with continuous renal replacement therapy (CRRT). Two patients developed diarrhea. CONCLUSION The combination of CAZ/AVI and colistin has potential efficacy in patients with CR-GNB infection, but more studies are needed to determine whether it can reduce 30-day mortality rates and increase 7-day microbial clearance. At the same time, the adverse reactions of combination therapy should not be ignored.
Collapse
Affiliation(s)
- Zihao Zheng
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Ziqiang Shao
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Gongshu District, Hangzhou, 310014, Zhejiang Province, China
| | - Lihai Lu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Siyu Tang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Kai Shi
- Department of Respiratory Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, Zhejiang Province, China
| | - Fangxiao Gong
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Gongshu District, Hangzhou, 310014, Zhejiang Province, China
| | - Jingquan Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Gongshu District, Hangzhou, 310014, Zhejiang Province, China.
| |
Collapse
|
11
|
Yang X, Guo C, Wu G, Zhao K, Xiang D, Xu D, Liu D, He Y. Treatment of Central Nervous System Infection Caused by Multidrug-Resistant Acinetobacter baumannii with Intravenous and Intraventricular Colistin Sulfate: A Case Report and Literature Review. Infect Drug Resist 2023; 16:6029-6038. [PMID: 37719653 PMCID: PMC10503561 DOI: 10.2147/idr.s425415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose Due to the spread of antimicrobial-resistant bacteria and poor penetration of many antimicrobial drugs across the blood-brain barrier following intravenous administration, treatment of central nervous system (CNS) infections is challenging, especially infections caused by carbapenem-resistant organisms (CRO). Intraventricular (IVT) infusion of antimicrobial drugs could be a choice. This report aims to describe a patient with CNS infection caused by carbapenem-resistant Acinetobacter baumannii (CRAB) which was successfully treated with IVT combined with intravenous (IV) colistin sulfate. Methods A case of CNS infection caused by CRAB after a craniocerebral injury was presented. The patient was treated with IVT together with IV colistin sulfate. Moreover, literature on the regimens and safety of colistin sulfate were also reviewed and summarized. Results Intraventricular (50,000 U, qd/100,000 U, qd) combined with IV (500,000 U, q12h/500,000 U, q8h) colistin sulfate was given to the patient, and the CNS infection was successfully controlled. The patient was finally transferred back to a local hospital for rehabilitation treatment. No nephrotoxicity or neurotoxicity was observed during the therapy. Conclusion IV combined with IVT colistin sulfate is effective in the treatment of CNS infections caused by CRAB. IVT concomitant IV colistin sulfate might be a therapeutic option worth considering in the treatment of CNS infections caused by CRO.
Collapse
Affiliation(s)
- Xueping Yang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Pharmacy, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, 434000, People’s Republic of China
| | - Changhong Guo
- Department of Scientific Education, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, 434000, People’s Republic of China
| | - Guangjie Wu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Dong Xu
- Department of Infection Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yan He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
12
|
Onofrei MI, Ghiciuc CM, Luca CM, Postolache P, Sapaniuc C, Enache Leonte G, Rosu FM. Optimization of Therapy and the Risk of Probiotic Use during Antibiotherapy in Septic Critically Ill Patients: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:478. [PMID: 36984479 PMCID: PMC10056847 DOI: 10.3390/medicina59030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023]
Abstract
Optimizing the entire therapeutic regimen in septic critically ill patients should be based not only on improving antibiotic use but also on optimizing the entire therapeutic regimen by considering possible drug-drug or drug-nutrient interactions. The aim of this narrative review is to provide a comprehensive overview on recent advances to optimize the therapeutic regimen in septic critically ill patients based on a pharmacokinetics and pharmacodynamic approach. Studies on recent advances on TDM-guided drug therapy optimization based on PK and/or PD results were included. Studies on patients <18 years old or with classical TDM-guided therapy were excluded. New approaches in TDM-guided therapy in septic critically ill patients based on PK and/or PD parameters are presented for cefiderocol, carbapenems, combinations beta-lactams/beta-lactamase inhibitors (piperacillin/tazobactam, ceftolozane/tazobactam, ceftazidime/avibactam), plazomicin, oxazolidinones and polymyxins. Increased midazolam toxicity in combination with fluconazole, nephrotoxic synergism between furosemide and aminoglycosides, life-threatening hypoglycemia after fluoroquinolone and insulin, prolonged muscle weakness and/or paralysis after neuromuscular blocking agents and high-dose corticosteroids combinations are of interest in critically ill patients. In the real-world practice, the use of probiotics with antibiotics is common; even data about the risk and benefits of probiotics are currently spares and inconclusive. According to current legislation, probiotic use does not require safety monitoring, but there are reports of endocarditis, meningitis, peritonitis, or pneumonia associated with probiotics in critically ill patients. In addition, probiotics are associated with risk of the spread of antimicrobial resistance. The TDM-guided method ensures a true optimization of antibiotic therapy, and particular efforts should be applied globally. In addition, multidrug and drug-nutrient interactions in critically ill patients may increase the likelihood of adverse events and risk of death; therefore, the PK and PD particularities of the critically ill patient require a multidisciplinary approach in which knowledge of clinical pharmacology is essential.
Collapse
Affiliation(s)
- Maria Ioana Onofrei
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Mihaela Ghiciuc
- Pharmacology, Clinical Pharmacology and Algeziology, Department of Morpho-Functional Sciences II, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Catalina Mihaela Luca
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Paraschiva Postolache
- Department of Medicine I—Pulmonary Rehabilitation Clinic, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Sapaniuc
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Georgiana Enache Leonte
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Florin Manuel Rosu
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
13
|
Lu X, Zhong C, Liu Y, Ye H, Qu J, Zong Z, Lv X. Efficacy and safety of polymyxin E sulfate in the treatment of critically ill patients with carbapenem-resistant organism infections. Front Med (Lausanne) 2022; 9:1067548. [PMID: 36643845 PMCID: PMC9834999 DOI: 10.3389/fmed.2022.1067548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Polymyxins are currently the last line of defense in the treatment of carbapenem-resistant organisms (CRO). As a kind of polymyxin available for clinical use in China, we aim to explore the efficacy and safety of colistin sulfate (Polymyxin E sulfate, PES) in this study. Methods This real-world retrospective study included 119 patients diagnosed with CRO infection and treated with PES for more than 72 h, from May 2020 to July 2022 at West China Hospital. The primary outcome was clinical efficacy at the end of treatment, and secondary outcomes included microbial response, in-hospital mortality and incidence of nephrotoxicity. Results The effective clinical and microbiological responses were 53.8% and 49.1%, respectively. And the in-hospital mortality was 27.7%. Only 9.2% of patients occurred with PES-related nephrotoxicity. Multivariate analysis revealed that duration of PES was an independent predictor of effective therapy, while age-adjusted Charlson comorbidity index (aCCI) and post-treatment PCT(p-PCT) were independent risk factors for poor outcome. Conclusions PES can be a salvage treatment for CRO-induced infections with favorable efficacy and low nephrotoxicity. The treatment duration of PES, aCCI and p-PCT were factors related to the clinical effectiveness of PES.
Collapse
|
14
|
Treatment of Central Nervous System Infection Caused by Multidrug-Resistant Klebsiella pneumoniae with Colistin Sulfate Intravenously and Intrathecally: A Case Report. Pharmaceuticals (Basel) 2022; 15:ph15121482. [PMID: 36558933 PMCID: PMC9787966 DOI: 10.3390/ph15121482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Due to the blood-brain barrier and limited antibiotic choices, polymyxin is currently the first-line agent for the treatment of central nervous system infections (CNSIs) caused by multidrug-resistant Gram-negative bacteria (MDR-GNB). Colistin sulfate, as a polymyxin E different from CMS, is used in Chinese clinics, and there are limited reports on its use in the treatment of CNSIs. Case Presentation: This case describes a 76-year-old man who underwent complex neurosurgery for cervical spinal stenosis. Postoperatively, the patient developed a fever and a poorly healed surgical wound. Numerous blood routine tests, inflammatory markers, pathogenic tests of cervical secretions, cerebrospinal fluid (CSF), and sputum were sent for diagnosis. After empirical antimicrobial treatments failed, the CSF and wound pus cultured carbapenem-resistant Klebsiella pneumoniae. The regimen was adjusted to colistin sulfate intravenously and intrathecal injection combined with tigecycline. In addition, the management of infection foci, including continuous lumbar pool drain, cervical 3-5 internal fixation removal with cervical 1-6 spine dilation, CSF leak repair, and right thigh broad fasciotomy, were performed. After treatment, the patient was discharged with multiple sets of negative CSF cultures and the infection under control. Conclusions: For CNSIs caused by MDR-GNB, the selection of colistin sulfate for intravenous and topical combination treatment is a viable choice.
Collapse
|
15
|
Cai XJ, Chen Y, Zhang XS, Wang YZ, Zhou WB, Zhang CH, Wu B, Song HZ, Yang H, Yu XB. Population pharmacokinetic analysis, renal safety, and dosing optimization of polymyxin B in lung transplant recipients with pneumonia: A prospective study. Front Pharmacol 2022; 13:1019411. [PMID: 36313312 PMCID: PMC9608142 DOI: 10.3389/fphar.2022.1019411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives: This study aims to characterize the population pharmacokinetics of polymyxin B in lung transplant recipients and optimize its dosage regimens. Patients and methods: This prospective study involved carbapenem-resistant organisms-infected patients treated with polymyxin B. The population pharmacokinetic model was developed using the NONMEM program. The clinical outcomes including clinical treatment efficacy, microbiological efficacy, nephrotoxicity, and hyperpigmentation were assessed. Monte Carlo simulation was performed to calculate the probability of target attainment in patients with normal or decreased renal function. Results: A total of 34 hospitalized adult patients were included. 29 (85.29%) patients were considered of clinical cure or improvement; 14 (41.18%) patients had successful bacteria elimination at the end of the treatment. Meanwhile, 5 (14.71%) patients developed polymyxin B-induced nephrotoxicity; 19 (55.88%) patients developed skin hyperpigmentation. A total of 164 concentrations with a range of 0.56–11.66 mg/L were obtained for pharmacokinetic modeling. The pharmacokinetic characteristic of polymyxin B was well described by a 1-compartment model with linear elimination, and only creatinine clearance was identified as a covariate on the clearance of polymyxin B. Monte Carlo simulations indicated an adjusted dosage regimen might be needed in patients with renal insufficiency and the currently recommended dose regimens by the label sheet of polymyxin B may likely generate a subtherapeutic exposure for MIC = 2 mg/L. Conclusion: Renal function has a significant effect on the clearance of polymyxin B in lung transplant recipients, and an adjustment of dosage was needed in patients with renal impairments.
Collapse
Affiliation(s)
- Xiao-Jun Cai
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yan Chen
- Division of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, China
| | - Xiao-Shan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yu-Zhen Wang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Wen-Bo Zhou
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Chun-Hong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Wu
- Lung Transplant Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Hui-Zhu Song
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Hui-Zhu Song, ; Hang Yang, ; Xu-Ben Yu,
| | - Hang Yang
- Lung Transplant Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Hui-Zhu Song, ; Hang Yang, ; Xu-Ben Yu,
| | - Xu-Ben Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Chonnam National University, Gwangju, South Korea
- *Correspondence: Hui-Zhu Song, ; Hang Yang, ; Xu-Ben Yu,
| |
Collapse
|
16
|
Chen H, Li P. Commentary: Population pharmacokinetics of colistin sulfate in critically ill patients: Exposure and clinical efficacy. Front Pharmacol 2022; 13:992085. [PMID: 36176436 PMCID: PMC9514206 DOI: 10.3389/fphar.2022.992085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Huadong Chen
- Department of Pharmacy, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Piaopiao Li
- Department of Pharmacy, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| |
Collapse
|
17
|
Xie YL, Jin X, Yan SS, Wu CF, Xiang BX, Wang H, Liang W, Yang BC, Xiao XF, Li ZL, Pei Q, Zuo XC, Peng Y. Population pharmacokinetics of intravenous colistin sulfate and dosage optimization in critically ill patients. Front Pharmacol 2022; 13:967412. [PMID: 36105229 PMCID: PMC9465641 DOI: 10.3389/fphar.2022.967412] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Aims: To explore the population pharmacokinetics of colistin sulfate and to optimize the dosing strategy for critically ill patients.Methods: The study enrolled critically ill adult patients who received colistin sulfate intravenously for more than 72 h with at least one measurement of plasma concentration. Colistin concentrations in plasma or urine samples were measured by ultraperformance liquid chromatography tandem mass spectrometry (LC-MS/MS). The population pharmacokinetics (PPK) model for colistin sulfate was developed using the Phoenix NLME program. Monte Carlo simulation was conducted to evaluate the probability of target attainment (PTA) for optimizing dosing regimens.Results: A total of 98 plasma concentrations from 20 patients were recorded for PPK modeling. The data were adequately described by a two-compartment model with linear elimination. During modeling, creatinine clearance (CrCL) and alanine aminotransferase (ALT) were identified as covariates of the clearance (CL) and volume of peripheral compartment distribution (V2), respectively. In addition, colistin sulfate was predominantly cleared by the nonrenal pathway with a median urinary recovery of 10.05% with large inter-individual variability. Monte Carlo simulations revealed a greater creatinine clearance associated with a higher risk of sub-therapeutic exposure to colistin sulfate. The target PTA (≥90%) of dosage regimens recommended by the label sheet was achievable only in patients infected by pathogens with MIC ≤0.5 mg/L or with renal impairments.Conclusion: Our study showed that the dose of intravenous colistin sulfate was best adjusted by CrCL and ALT. Importantly, the recommended dosing regimen of 1.0–1.5 million units daily was insufficient for patients with normal renal functions (CrCL ≥80 ml/min) or those infected by pathogens with MIC ≥1.0 mg/L. The dosage of colistin sulfate should be adjusted according to renal function and drug exposure.
Collapse
Affiliation(s)
- Yue-liang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Jin
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shan-shan Yan
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Cui-fang Wu
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bi-xiao Xiang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- College of Pharmacy, Zunyi Medical University, Guizhou, China
| | - Hui Wang
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wu Liang
- Changsha VALS Technology Co. Ltd., Changsha, China
| | - Bing-chang Yang
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xue-fei Xiao
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhi-ling Li
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao-cong Zuo, ; Yue Peng,
| | - Yue Peng
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China
- *Correspondence: Xiao-cong Zuo, ; Yue Peng,
| |
Collapse
|