1
|
Jin Z, Liu M, Xie B, Wen W, Yan Y, Zhang Y, Li H, Shen Z, Jiang L, Gao M, Chen K, Zhao F. Generation of a medicine food homology formula and its likely mechanism in treatment of microvascular angina. Front Pharmacol 2024; 15:1404874. [PMID: 39281275 PMCID: PMC11401076 DOI: 10.3389/fphar.2024.1404874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Microvascular angina (MVA) is the most common cause of cardiac ischemic chest pain in patients without obstructive coronary artery disease (CAD) and lacks of effective treatment means. Medicine food homology (MFH) involves substances with both nutritional and medicinal qualities that have the potential to improve MVA symptoms as medicines, dietary supplements. However, research on MFH formula (MFHF) for MVA is not available. The study aims to generate a core MFHF for MVA through data mining and offer scientific backing for the utilization of edible medications in the prevention and alleviation of MVA. 11 databases were utilized to construct a database of MFH drugs, and the MFHF was generated through frequency analysis, association rule analysis, and clustering analysis. The composition of the formula is Codonopsis Radix, Astragali Radix, Platycodonis Radix, Persicae Semen, Glycyrrhizae Radix Et Rhizoma, Angelicae Sinensis Radix, and Allii Macrostemonis Bulbus. Through network pharmacology and molecular docking, we identified five major active components of MFHF: Adenosine, Nonanoic Acid, Lauric Acid, Caprylic Acid, and Enanthic Acid, along with nine core targets (NFKB1, ALB, AKT1, ACTB, TNF, IL6, ESR1, CASP3, and PTGS) for the improvement of MVA. These 5 active components have various biological activities, such as reducing oxidative stress, anti-inflammation, analgesia effect, inhibiting platelet aggregation, vasodilatation, vascular endothelial protection, and cardio-protection. GO and KEGG enrichment analyses revealed that MFHF mainly acted on the response to xenobiotic stimulus, integrative component of the plasma membrane, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding, pathways in cancer, lipid and atherosclerosis, human cytomegalovirus infection, and the PI3K-Akt signaling pathway, which are the main pathogenesis of MVA.
Collapse
Affiliation(s)
- Zhidie Jin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingwang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beili Xie
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Wen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Yan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yangfang Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haohao Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - ZhengYu Shen
- Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Lulian Jiang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Mengjie Gao
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Keji Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fuhai Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Wang Y, Wang B, Ling H, Li Y, Fu S, Xu M, Li B, Liu X, Wang Q, Li A, Zhang X, Liu M. Navigating the Landscape of Coronary Microvascular Research: Trends, Triumphs, and Challenges Ahead. Rev Cardiovasc Med 2024; 25:288. [PMID: 39228508 PMCID: PMC11366996 DOI: 10.31083/j.rcm2508288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/11/2024] [Accepted: 03/01/2024] [Indexed: 09/05/2024] Open
Abstract
Coronary microvascular dysfunction (CMD) refers to structural and functional abnormalities of the microcirculation that impair myocardial perfusion. CMD plays a pivotal role in numerous cardiovascular diseases, including myocardial ischemia with non-obstructive coronary arteries, heart failure, and acute coronary syndromes. This review summarizes recent advances in CMD pathophysiology, assessment, and treatment strategies, as well as ongoing challenges and future research directions. Signaling pathways implicated in CMD pathogenesis include adenosine monophosphate-activated protein kinase/Krüppel-like factor 2/endothelial nitric oxide synthase (AMPK/KLF2/eNOS), nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), Angiotensin II (Ang II), endothelin-1 (ET-1), RhoA/Rho kinase, and insulin signaling. Dysregulation of these pathways leads to endothelial dysfunction, the hallmark of CMD. Treatment strategies aim to reduce myocardial oxygen demand, improve microcirculatory function, and restore endothelial homeostasis through mechanisms including vasodilation, anti-inflammation, and antioxidant effects. Traditional Chinese medicine (TCM) compounds exhibit therapeutic potential through multi-targeted actions. Small molecules and regenerative approaches offer precision therapies. However, challenges remain in translating findings to clinical practice and developing effective pharmacotherapies. Integration of engineering with medicine through microfabrication, tissue engineering and AI presents opportunities to advance the diagnosis, prediction, and treatment of CMD.
Collapse
Affiliation(s)
- Yingyu Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Bing Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Hao Ling
- Department of Radiology, The Affiliated Changsha Central Hospital,
Hengyang Medical School, University of South China, 410000 Changsha, Hunan, China
| | - Yuan Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Sunjing Fu
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Mengting Xu
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Xueting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Qin Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Ailing Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center,
Peking University First Hospital, 100005 Beijing, China
| | - Mingming Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
- Diabetes Research Center, Chinese Academy of Medical Science, 100005
Beijing, China
| |
Collapse
|
3
|
Guo Z, Yang Z, Song Z, Li Z, Xiao Y, Zhang Y, Wen T, Pan G, Xu H, Sheng X, Jiang G, Guo L, Wang Y. Inflammation and coronary microvascular disease: relationship, mechanism and treatment. Front Cardiovasc Med 2024; 11:1280734. [PMID: 38836066 PMCID: PMC11148780 DOI: 10.3389/fcvm.2024.1280734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Coronary microvascular disease (CMVD) is common in patients with cardiovascular risk factors and is linked to an elevated risk of adverse cardiovascular events. Although modern medicine has made significant strides in researching CMVD, we still lack a comprehensive understanding of its pathophysiological mechanisms due to its complex and somewhat cryptic etiology. This greatly impedes the clinical diagnosis and treatment of CMVD. The primary pathological mechanisms of CMVD are structural abnormalities and/or dysfunction of coronary microvascular endothelial cells. The development of CMVD may also involve a variety of inflammatory factors through the endothelial cell injury pathway. This paper first reviews the correlation between the inflammatory response and CMVD, then summarizes the possible mechanisms of inflammatory response in CMVD, and finally categorizes the drugs used to treat CMVD based on their effect on the inflammatory response. We hope that this paper draws attention to CMVD and provides novel ideas for potential therapeutic strategies based on the inflammatory response.
Collapse
Affiliation(s)
- Zehui Guo
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenzhen Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Xiao
- Department of Pharmacy, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiyun Pan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haowei Xu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodi Sheng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Guowang Jiang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Liping Guo
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Chen Y, Li WW, Bi SL, Zhang HM, Sun Z, Zuo YY, Xu L, Chen SQ. Visualizing research trends and identifying hotspots of herbal components for treating cardiovascular diseases: A bibliometric analysis from 2000 to 2023. Medicine (Baltimore) 2024; 103:e35047. [PMID: 38335393 PMCID: PMC10860942 DOI: 10.1097/md.0000000000035047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the global research trends in herbal medicine for the treatment of cardiovascular disease (CVD) from 2000 to 2023. A bibliometric approach was employed to analyze international collaborations, knowledge structures, emerging trends, and research frontiers. METHOD The Web of Science (WOS) core collection was utilized as the database, employing the search formula (((TS = (traditional Chinese medicine)) OR TS = (Chinese herbal medicinal ingredient)) OR TS = (Chinese herbal medicinal constituent)) AND TS = (cardiovascular disease) to conduct the search. The search period spanned from January 1, 2000, to February 14, 2023, and the literature type included articles and reviews. RESULTS A total of 1478 papers were included in the analysis after searching the WOS database and excluding conference proceedings, news articles, retractions, editorials, and letters. China demonstrated the highest number of publications, followed by the United States and Taiwan (China). The institution with the highest publications was the Chinese Academy of Medical Sciences. China, the United States, and India were the main countries involved in research in this field, and there was significant collaboration among them. The hotspots related to herbal components for treating cardiovascular diseases from 2000 to 2023 included systematic reviews, ischemic reperfusion injury, global burden, type 2 diabetes, and protection. CONCLUSION This paper provides a reference for the future development of herbal research in cardiovascular aspects by revealing the current status, hotspots, and trends of global herbal research in cardiovascular factors over more than 20 years. Identification of potential collaborators and institutions can assist researchers in exploring new directions for future research and discovering new perspectives for potential collaborations in this field.
Collapse
Affiliation(s)
- Ying Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Wen Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Si-Ling Bi
- Shandong University of Traditional Chinese Medicine, Jinan, China
- The Second Hospital, Shandong University of Traditional Chinese Medicine
| | - He-Meng Zhang
- The Second Hospital, Shandong University of Traditional Chinese Medicine
| | - Zhenhai Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao-Yao Zuo
- The Second Hospital, Shandong University of Traditional Chinese Medicine
| | - Liang Xu
- The Second Hospital, Shandong University of Traditional Chinese Medicine
| | - Shou-Qiang Chen
- The Second Hospital, Shandong University of Traditional Chinese Medicine
| |
Collapse
|
5
|
Datta P, Nath S, Pathade AG, Yelne S. Unveiling the Enigma: Exploring the Intricate Link Between Coronary Microvascular Dysfunction and Takotsubo Cardiomyopathy. Cureus 2023; 15:e44552. [PMID: 37790001 PMCID: PMC10544771 DOI: 10.7759/cureus.44552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
This review article delves into the intricate and evolving relationship between coronary microvascular dysfunction (CMD) and takotsubo cardiomyopathy (TCM), two intriguing cardiovascular conditions increasingly recognised for their potential interplay. We examine their characteristics, shared pathophysiological mechanisms, diagnostic challenges, and management strategies. Emerging evidence suggests a link between microvascular dysfunction and the development of TCM, leading to a deeper exploration of their connection. Accurate diagnosis of both conditions becomes essential, as microvascular dysfunction may modify TCM outcomes. We underscore the significance of understanding this connection for improved patient care, emphasising the need for tailored interventions when CMD and TCM coexist. Collaborative research and heightened clinical awareness are advocated to advance our comprehension of this relationship. Through interdisciplinary efforts, we aim to refine diagnostic precision, develop targeted therapies, and enhance patient outcomes in cardiovascular medicine.
Collapse
Affiliation(s)
- Pragyamita Datta
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | | | - Aniket G Pathade
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Seema Yelne
- Nursing, Shalinitai Meghe College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
6
|
Yang Z, Liu Y, Song Z, Fan Y, Lin S, Ge Z, Feng S, Liu Y, Bi Y, Wang Y, Wang X, Mao J. Chinese patent medicines for coronary microvascular disease: clinical evidence and potential mechanisms. Int J Med Sci 2023; 20:1024-1037. [PMID: 37484810 PMCID: PMC10357442 DOI: 10.7150/ijms.85789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
Coronary microvascular disease (CMVD) is a high risk factor for many cardiovascular events. Due to the limited understanding of its pathophysiological mechanism, modern medicine still lacks therapeutic drugs for CMVD. Existing clinical studies have shown that traditional Chinese medicine (TCM) can effectively improve the clinical symptoms and quality of life of CMVD patients. As an indispensable part of TCM, Chinese patent medicines (CPMs) are widely used in clinical practice. In the face of numerous oral CPMs for treatment of CMVD, how to choose a reasonable medication regimen is one of the important issues in clinic. Based on this, this paper reviewed the clinical efficacy and recommended level of 12 CPMs in the treatment of CMVD, which are recommended by expert consensus on diagnosis and treatment of coronary microvascular disease with integrated Chinese and Western medicine (WM). In addition, this study also systematically summarized the possible mechanisms of CPMs in the treatment of CMVD by protecting coronary microvascular endothelial cells, improving vascular endothelial function, inhibiting inflammation, reducing oxidative stress, promoting angiogenesis, and improving hemorheology, aiming to provide meaningful information for its clinical application.
Collapse
Affiliation(s)
- Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yangxi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yujian Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Shanshan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Zhao Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Shaoling Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yingfei Bi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| |
Collapse
|
7
|
Kong J, Li S, Li Y, Chen M. Effects of Salvia miltiorrhiza active compounds on placenta-mediated pregnancy complications. Front Cell Dev Biol 2023; 11:1034455. [PMID: 36711034 PMCID: PMC9880055 DOI: 10.3389/fcell.2023.1034455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Placenta-mediated pregnancy complications (PMPCs), including preeclampsia (PE), fetal growth restriction (FGR), and recurrent spontaneous abortion (RSA), occur in approximately 5% of pregnancies and are caused by abnormal placenta development. The development of effective therapies for PMPCs is still challenging due to the complicated pathogenesis, such as disrupted vascular homeostasis and subsequent abnormal placentation. Synthetic drugs have been recommended for treating PMPCs; however, they tend to cause adverse reactions in the mother and fetus. Salvia miltiorrhiza (S. miltiorrhiza) has potential effects on PMPCs owing to its advantages in treating cardiovascular disorders. S. miltiorrhiza and its active compounds could attenuate the symptoms of PMPCs through anticoagulation, vasodilation, antioxidation, and endothelial protection. Thus, in this review, we summarize the literature and provide comprehensive insights on S. miltiorrhiza and its phytochemical constituents, pharmacological activities, and on PMPCs, which would be valuable to explore promising drugs.
Collapse
Affiliation(s)
- Jingyin Kong
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Songjun Li
- Department of Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yingting Li
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Min Chen,
| |
Collapse
|