1
|
Pan Y, Fan Z, Yu S, Xia L, Li J. ROS-responsive supramolecular antimicrobial peptides-based nanoprodrugs for cervical cancer therapy. Colloids Surf B Biointerfaces 2025; 247:114411. [PMID: 39613501 DOI: 10.1016/j.colsurfb.2024.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Although antimicrobial peptides (AMPs) as a promising natural drugs can efficiently inhibit cervical cancer, poor bioavailability, low tumor selectivity, and non-selective toxicity still hinder its further application in vivo. In order to effectively address these challenges, we have developed a reactive oxygen species (ROS)-responsive targeting nanoprodrug designed for selective therapy of cervical cancer. Such nanoprodrugs (CEC-OxbCD) are fabricated by the supramolecular self-assembly of the modified β-cyclodextrin (β-CD) and AMPs. Antimicrobial peptide, CecropinXJ (CEC), is a cationic antibacterial peptide isolated from 3rd instar larvae of Bombyx mori from Xinjiang, China. OxbCD is an oxidation-responsive β-cyclodextrin material. CEC-OxbCD were synthesized using the nanoprecipitation/self-assembly method. Subsequently, the particle size distribution, morphology, drug loading efficiency, and release behaviour of CEC-OxbCD were characterised. In vitro and in vivo anti-cancer activities were also evaluated. Nanoprodrugs can be effectively disassembled under stimuli of the tumor- endogenous ROS, resulting in a rapid and on-demand release of antimicrobial peptides (AMPs) with a release rate of 90 %. Furthermore, both in vitro and in vivo experimental results demonstrate that our nanoprodrugs exhibit remarkable therapeutic efficacy against cervical cancer. This work not only provides an effective and promising therapeutic strategy for cervical cancer, but also explores a novel application for AMPs.
Collapse
Affiliation(s)
- Yanzhu Pan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zhongxiong Fan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Shaoqi Yu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
2
|
Velapure P, Kansal D, Bobade C. Tumor microenvironment-responsive nanoformulations for breast cancer. DISCOVER NANO 2024; 19:212. [PMID: 39708097 DOI: 10.1186/s11671-024-04122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 12/23/2024]
Abstract
Nanomedicine, the most promising approach for regulated and targeted drug delivery, is frequently applied in cancer treatment. Essentially, accumulating evidence indicates that nanomedicine has positive results in the treatment of breast cancer (BC), with many BC patients benefiting from nanomedicine-related treatments. Currently, nanodrug delivery systems based on stimulus responses are gaining popularity because of their additional ability to manage drug release depending on the interior environment of the cancer. This review includes a synopsis of several types of internal (pH, redox, enzyme, reactive oxygen species, and hypoxia) stimuli-responsive nanoparticle drug delivery systems as well as perspectives for forthcoming times. Stimulus-responsive nanoparticles can remain stable under physiological conditions while being rapidly activated to release drugs in response to specific stimuli, prolonging blood circulation and increasing cancer cellular uptake, resulting in excellent therapeutic performance and improved biosafety. In this paper, we discuss tumor microenvironment responsive Nanoformulation for breast cancer treatment.
Collapse
Affiliation(s)
- Pallavi Velapure
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India
| | - Divyanshi Kansal
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India
| | - Chandrashekhar Bobade
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India.
| |
Collapse
|
3
|
Li J, He H, Liu S, Li X, Wu F. Revealing tumor cells and tissues with high selectivity through folic acid-targeted nanofluorescence probes responsive to acidic microenvironments. Front Oncol 2024; 14:1404148. [PMID: 38933449 PMCID: PMC11199542 DOI: 10.3389/fonc.2024.1404148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor-specific fluorescent probes must fulfill the dual requirements of targeted accumulation within tumors and high-resolution imaging capabilities. To achieve both tumor-targeted accumulation and high-resolution imaging performance, we developed a composite comprising an acid-responsive bodipy conjugated to amphiphilic PEG-b-PLA polymer, along with folic acid (FA)-modified PEG-b-PLA as a targeting moiety for active tumor-specific accumulation. Finally, a novel assembly of hybrid fluorescent nanoparticles was successfully synthesized by integrating these two components, demonstrating exceptional responsiveness to acidic conditions for fluorescence excitation and remarkable tumor-targeted accumulation capabilities. We conducted comprehensive in vitro and in vivo investigations employing techniques such as analysis of physicochemical properties, fluorescence-based probes detection at varying pH levels, assessment of in vitro cytotoxicity, evaluation of cellular uptake capacity, analysis of lysosomal co-localization imaging, examination of tumor fluorescence images in vivo, and investigation of biological distribution patterns. The results demonstrated that the acid-responsive nanofluorescence probe we designed and synthesized possesses desirable physical and chemical characteristics, including a small particle size and low cytotoxicity. Moreover, it exhibits rapid real-time response to acidic environments and displays enhanced fluorescence intensity, enabling the real-time tracking of probe entry into tumor cells as well as intracellular lysozyme accumulation. We achieved highly specific in vivo tumor visualization by combining nanoprobes targeting folate receptor. Through imaging cervical tumor mice, we demonstrated the precise imaging performance and high targeted accumulation of FA-targeted nanofluorescence probes in tumor tissue. Furthermore, we confirmed the in vivo safety of the FA-targeted nanofluorescence probe through biological distribution analysis. These findings highlight the potential widespread application of FA-targeted acid-responsive nanofluorescence probes for selective imaging of tumor cells and tissues.
Collapse
Affiliation(s)
- Jing Li
- Neurobiology Laboratory, Wannan Medical College, Wuhu, China
| | - Hongyi He
- College of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Shuyan Liu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, China
| | - Xining Li
- School of Medicine, Huzhou University, Huzhou, China
| | - Fengfeng Wu
- Department of Orthopedics and Rehabilitation, Huzhou Hospital of Zhejiang University School of Medicine, Huzhou, China
- Department of Orthopedics and Rehabilitation, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
4
|
Pan X, Lu Y, Fan S, Tang H, Tan H, Cao C, Cheng Y, Liu Y. Gold Nanocage-Based Multifunctional Nanosensitizers for Programmed Photothermal /Radiation/Chemical Coordinated Therapy Guided by FL/MR/PA Multimodal Imaging. Int J Nanomedicine 2023; 18:7237-7255. [PMID: 38076731 PMCID: PMC10710274 DOI: 10.2147/ijn.s436931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Radiotherapy is one of the main clinical methods for the treatment of malignant tumors at present. However, its application is limited by the radiation resistance of some tumor cells and the irradiation damage to the surrounding normal tissues, and the limitation of radiotherapy dose also affects the therapeutic effect. Therefore, developing diagnostic and therapeutic agents with imaging and radiosensitizing functions is urgently needed to improve the accuracy and efficacy of radiotherapy. MATERIALS AND STRATEGY Herein, we synthesized multifunctional nanotheranostic FRNPs nanoparticles based on gold nanocages (GNCs) and MnO2 for magnetic resonance (MR)/photoacoustic (PA) imaging and combined photothermal, radiosensitive and chemical therapy. A programmed therapy strategy based on FRNPs is proposed. First, photothermal therapy is applied to ablate large tumors and increase the sensitivity of the tumor tissue to radiotherapy, then X-ray radiation is performed to further reduce the tumor size, and finally chemotherapeutic agents are used to eliminate smaller residual tumors and distant metastases. RESULTS As revealed by fluorescence, MR and PA imaging, FRNPs achieved efficient aggregation and retention at tumor sites of mice after intravenous injection. In vivo studies have shown that the programmed treatment of FRNPs-injected nude mice which were exposed to X-ray after 808 laser irradiation achieved the greatest inhibition of tumor growth compared with other treatment groups. Moreover, no obvious systemic toxicity was observed in all groups of mice, indicating the good biocompatibility of FRNPs and the safety of the treatment scheme. CONCLUSION To sum up, our work not only showed a new radiosensitizer, but also provided a promising theranostic strategy for cancer treatment.
Collapse
Affiliation(s)
- Xinni Pan
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yi Lu
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shanshan Fan
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hao Tang
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Cheng Cao
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yanlei Liu
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Lima ES, dos Santos D, Souza AL, Macedo ME, Bandeira ME, Junior SSS, Fiuza BSD, Rocha VPC, dos Santos Fonseca LM, Nunes DDG, Hodel KVS, Machado BAS. RNA Combined with Nanoformulation to Advance Therapeutic Technologies. Pharmaceuticals (Basel) 2023; 16:1634. [PMID: 38139761 PMCID: PMC10745936 DOI: 10.3390/ph16121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Nucleic acid-based therapies have the potential to address numerous diseases that pose significant challenges to more traditional methods. RNA-based therapies have emerged as a promising avenue, utilizing nanoformulation treatments to target a range of pathologies. Nanoformulation offers several advantages compared to other treatment modalities, including targeted delivery, low toxicity, and bioactivity suitable for drug loading. At present, various types of nanoformulations are available, such as liposomes, polymeric nanoparticles (NPs), magnetic NPs, nanoshells, and solid lipid nanoparticles (SLNs). RNA-based therapy utilizes intracellular gene nanoparticles with messenger RNA (mRNA) emerging prominently in cancer therapy and immunotechnology against infectious diseases. The approval of mRNA-based technology opens doors for future technological advancements, particularly self-amplifying replicon RNA (repRNA). RepRNA is a novel platform in gene therapy, comprising viral RNA with a unique molecular property that enables the amplification of all encoded genetic information countless times. As a result, repRNA-based therapies have achieved significant levels of gene expression. In this context, the primary objective of this study is to furnish a comprehensive review of repRNA and its applications in nanoformulation treatments, with a specific focus on encapsulated nanoparticles. The overarching goal is to provide an extensive overview of the use of repRNA in conjunction with nanoformulations across a range of treatments and therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC (Integrated Manufacturing and Technology Campus), Salvador 41650-010, Brazil; (E.S.L.); (D.d.S.); (A.L.S.); (M.E.M.); (M.E.B.); (S.S.S.J.); (B.S.D.F.); (V.P.C.R.); (L.M.d.S.F.); (D.D.G.N.); (K.V.S.H.)
| |
Collapse
|