1
|
Zhao P, Chang J, Chen Y, Sun X, Ma X, Zhou C, Zhou L, Wang Y, Yang Y. Cellular Senescence-Related Long Non-coding RNA Signatures Predict Prognosis in Juvenile Osteosarcoma. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:430-452. [PMID: 39723224 PMCID: PMC11666862 DOI: 10.1007/s43657-023-00132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 12/28/2024]
Abstract
Osteosarcoma is the most common malignant bone tumor and is frequently diagnosed in juvenile. Cellular senescence is a fundamental hallmark of osteosarcoma and plays a vital role in the initiation and progression of aging and tumorigenesis. Long non-coding RNAs (lncRNAs) are implicated in tumorigenesis. In this study, six cellular senescence-related lncRNAs with independent prognostic significance in juvenile osteosarcoma patients were identified through univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, and multivariate Cox regression analysis. Prognostic significance was further confirmed by Kaplan-Meier (KM) survival curves, co-expression interaction networks, and sankey diagrams. A prognostic model of cellular senescence-related genes in juvenile osteosarcoma patients was then constructed using multivariate Cox regression analysis based on these six genes. High- and low-risk groups were identified according to the median risk score calculated by the prognostic model. The favorable prognostic significance of this model was demonstrated through survival curves, receiver operating characteristic (ROC) curves, distribution scatter plots and lncRNA expression heatmaps. Furthermore, cellular senescence-related lncRNAs were validated by enrichment analysis, immunological correlation analysis, m6A correlation analysis, and drug sensitivity correlation analysis. These findings are important for improving the prognosis of juvenile osteosarcoma patients and understanding the mechanisms underlying cellular senescence in juvenile osteosarcoma development.
Collapse
Affiliation(s)
- Peng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - YeKai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Xingyuan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Xiaoping Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Chujie Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Lei Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| |
Collapse
|
2
|
Bozgeyik E, Elek A, Gocer Z, Bozgeyik I. The fate and function of non-coding RNAs during necroptosis. Epigenomics 2024; 16:901-915. [PMID: 38884366 PMCID: PMC11370912 DOI: 10.1080/17501911.2024.2354653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Necroptosis is a novel form of cell death which is activated when apoptotic cell death signals are disrupted. Accumulating body of observations suggests that noncoding RNAs, which are the lately discovered mystery of the human genome, are significantly associated with necroptotic signaling circuitry. The fate and function of miRNAs have been well documented in human disease, especially cancer. Recently, lncRNAs have gained much attention due to their diverse regulatory functions. Although available studies are currently based on bioinformatic analysis, predicted interactions desires further attention, as these hold significant promise and should not be overlooked. In the light of these, here we comprehensively review and discuss noncoding RNA molecules that play significant roles during execution of necroptotic cell death.
Collapse
Affiliation(s)
- Esra Bozgeyik
- Department of Medical Services & Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| | - Alperen Elek
- Faculty of Medicine, Ege University, Izmir, Turkey
| | - Zekihan Gocer
- Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
3
|
Liu S, Liu C, Wang Y, Chen J, He Y, Hu K, Li T, Yang J, Peng J, Hao L. The role of programmed cell death in osteosarcoma: From pathogenesis to therapy. Cancer Med 2024; 13:e7303. [PMID: 38800967 PMCID: PMC11129166 DOI: 10.1002/cam4.7303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Osteosarcoma (OS) is a prevalent bone solid malignancy that primarily affects adolescents, particularly boys aged 14-19. This aggressive form of cancer often leads to deadly lung cancer due to its high migration ability. Experimental evidence suggests that programmed cell death (PCD) plays a crucial role in the development of osteosarcoma. Various forms of PCD, including apoptosis, ferroptosis, autophagy, necroptosis, and pyroptosis, contribute significantly to the progression of osteosarcoma. Additionally, different signaling pathways such as STAT3/c-Myc signal pathway, JNK signl pathway, PI3k/AKT/mTOR signal pathway, WNT/β-catenin signal pathway, and RhoA signal pathway can influence the development of osteosarcoma by regulating PCD in osteosarcoma cell. Therefore, targeting PCD and the associated signaling pathways could offer a promising therapeutic approach for treating osteosarcoma.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Chengtao Liu
- Shandong Wendeng Osteopathic HospitalWeihaiChina
| | - Yian Wang
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Jiewen Chen
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Yujin He
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Kaibo Hu
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ting Li
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Junmei Yang
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jie Peng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Liang Hao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
4
|
Zhao S, Wang T, Huang F, Zhao Q, Gong D, Liu J, Yi C, Liang S, Bian E, Tian D, Jing J. A Novel Defined Necroptosis-Related Genes Prognostic Signature for Predicting Prognosis and Treatment of Osteosarcoma. Biochem Genet 2024; 62:831-852. [PMID: 37460861 DOI: 10.1007/s10528-023-10446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/29/2023] [Indexed: 04/20/2024]
Abstract
Osteosarcoma (OS) is a frequent primary malignant bone tumor, with a poor prognosis. Necroptosis is strongly correlated with OS and may be an influential target for treating OS. This study's objective was to establish a necroptosis-related gene (NRG) prognostic signature that could predict OS prognosis and guide OS treatment. First, we identified 20 NRGs associated with OS survival based on the TARGET database. We then derived a 7 NRG prognostic signature. Our findings revealed that the 7 NRG prognostic signature performed well in predicting the survival of OS patients. We next analyzed differences in immunological status and immune cell infiltration. In addition, we examined the relationship between chemo/immunotherapeutic response and the 7-NRG prognostic signature. In addition, to probe the mechanisms underlying the NRG prognostic signature, we performed functional enrichment assays including GO and KEGG. Finally, CHMP4C was selected for functional experiments. Silencing CHMP4C prevented OS cells from proliferating, migrating, and invading. This 7-NRG prognostic signature seems to be an excellent predictor that can provide a fresh direction for OS treatment.
Collapse
Affiliation(s)
- Shibing Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Tao Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fei Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Qingzhong Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Deliang Gong
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chengfeng Yi
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shuai Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
5
|
Tu C, Liu B, Li C, Feng C, Wang H, Zhang H, He S, Li Z. Integrative analysis of TROAP with molecular features, carcinogenesis, and related immune and pharmacogenomic characteristics in soft tissue sarcoma. MedComm (Beijing) 2023; 4:e369. [PMID: 37731946 PMCID: PMC10507284 DOI: 10.1002/mco2.369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/30/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Soft tissue sarcoma (STS) is an uncommon malignancy that often carries a grim prognosis. Trophinin-associated protein (TROAP) is augmented in a variety of tumors and can affect tumor proliferation. Nevertheless, the prognostic value and specific functions of TROAP in STS are still vague. Herein, we display that TROAP exhibits an augmented trend in STS, and its elevation correlates with a poor prognosis of STS. Furthermore, its reduction is related to increased immune cell infiltration, enhanced stroma, and elevation of immune activation. Meanwhile, the TROAP-derived genomic signature is validated to predict patient prognosis, immunotherapy, and drug response reliably. A nomogram constructed based on age, metastatic status, and a TROAP-derived risk score of an STS individual could be used to quantify the survival probability of STS. In addition, in vitro experiments have demonstrated that TROAP is overexpressed in STS, and the downregulation of TROAP could affect the proliferation, migration, metastasis, and cell cycle of STS cells. In summary, the TROAP expression is elevated in STS tissues and cells, which is related to the poor prognosis and malignant biological behaviors of STS. It could act as a potential prognostic biomarker for diagnosis and treatment of STS.
Collapse
Affiliation(s)
- Chao Tu
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Shenzhen Research Institute of Central South UniversityGuangdongChina
| | - Binfeng Liu
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Chenbei Li
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Chengyao Feng
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Hua Wang
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Haixia Zhang
- Department of OncologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Shasha He
- Department of OncologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhihong Li
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Shenzhen Research Institute of Central South UniversityGuangdongChina
| |
Collapse
|