1
|
Chida-Nagai A, Masaki N, Sato H, Kato T, Takakuwa E, Matsuno Y, Manabe A, Takeda A. Pulmonary artery-targeted low-dose metformin-loaded nanocapsules safely improve pulmonary arterial hypertension in rats. Front Pharmacol 2025; 16:1577570. [PMID: 40371328 PMCID: PMC12075939 DOI: 10.3389/fphar.2025.1577570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/03/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Pulmonary arterial hypertension (PAH) remains a challenge to tackle despite various available medications. Metformin, although promising, has major adverse effects; the use of an appropriate drug delivery method may improve its efficacy and safety. The aim of this study was to develop a novel treatment for PAH using metformin. We developed a novel approach of using low-dose metformin encapsulated in pulmonary artery-targeted nanocapsules to alleviate PAH while avoiding adverse effects. Methods Metformin-loaded lung-targeted nanocapsules (MET nanocapsules) were created using a specific lipid composition, including cationic lipids. Their uptake and effects on cell viability were assessed in human pulmonary arterial smooth muscle cells (hPASMCs) from healthy individuals and patients with PAH. Their therapeutic effects were assessed in a PAH rat model. The safety of MET nanocapsules was confirmed using rat serum biochemical tests. Results We successfully prepared MET nanocapsules and demonstrated their effectiveness in inhibiting PASMC proliferation. In PAH model rats, MET nanocapsule treatment led to improved hemodynamics, right ventricular hypertrophy, and pulmonary arterial medial thickening. The nanocapsules effectively accumulated in the lungs of PAH model rats. Conclusion Intravenous administration of MET nanocapsules is a safe and innovative therapeutic approach for PAH. This method could improve PAH treatment outcomes while minimizing adverse effects, with potential applications in other types of pulmonary hypertension.
Collapse
Affiliation(s)
- Ayako Chida-Nagai
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Naoki Masaki
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Sato
- Department of Cardiology and Clinical Examination, Oita University, Yufu, Japan
- Advanced Trauma, Emergency and Critical Care Center, Oita University Hospital, Yufu, Japan
| | - Tatsuya Kato
- Department of Thoracic Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Emi Takakuwa
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Atsuhito Takeda
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
2
|
Wu X, Xiao X, Su Y, Zhang Y, Li G, Wang F, Du Q, Yang H. Use quercetin for pulmonary fibrosis: a preclinical systematic review and meta-analysis. Inflammopharmacology 2025; 33:1879-1897. [PMID: 40038212 DOI: 10.1007/s10787-025-01678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an age-related interstitial lung disease, which lacks effective drug treatment at present. Quercetin has been shown to have favorable anti-inflammatory and anti-fibrotic properties, and preliminary evidence suggests its potential efficacy and tolerability in PF patients. However, a comprehensive systematic review and evaluation of the protective effects and potential mechanisms of quercetin in PF models remains to be completed. Therefore, we conducted this study. METHODS The PubMed, Cochrane Library, Embase, and Web of Science databases were searched up to the April 1, 2024. CAMARADES was the methodological quality assessment tool. And statistical analyses were conducted with R and Stata 16.0. Origin was used for a three-dimensional (3D) dosage-intervention duration-efficacy model for quercetin treatment of PF. RESULTS A total of 20 studies, encompassing 44 independent experiments and involving 1019 animals, were included in the analysis. Meta-analysis revealed that quercetin significantly mitigated lung pathological tissue scores and the expression of lung fibrosis markers in PF animal models. Furthermore, quercetin significantly ameliorated inflammatory responses, oxidative stress, epithelial-mesenchymal transition and myofibroblast activation, cell senescence and apoptosis, and the markers expression of extracellular matrix (ECM) deposition. Quercetin did not show significant hepatic and nephrotoxicity. The 3D dosage-intervention duration-efficacy model indicated that a dosing period over 20 days and dosages range of 5-100 mg/kg were appropriate modalities. CONCLUSION Herein, our study highlights the potential of quercetin in the treatment of PF and the available mechanisms.
Collapse
Affiliation(s)
- Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiang Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuchen Su
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuwei Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ganggang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Quanyu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Han Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
3
|
Baskal S, Posma RA, Bollenbach A, Dieperink W, Bakker SJL, Nijsten MW, Touw DJ, Tsikas D. GC-MS analysis of 4-hydroxyproline: elevated proline hydroxylation in metformin-associated lactic acidosis and metformin-treated Becker muscular dystrophy patients. Amino Acids 2024; 56:21. [PMID: 38461423 PMCID: PMC10925573 DOI: 10.1007/s00726-024-03383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Metformin (N,N-dimethylbiguanide), an inhibitor of gluconeogenesis and insulin sensitizer, is widely used for the treatment of type 2 diabetes. In some patients with renal insufficiency, metformin can accumulate and cause lactic acidosis, known as metformin-associated lactic acidosis (MALA, defined as lactate ≥ 5 mM, pH < 7.35, and metformin concentration > 38.7 µM). Here, we report on the post-translational modification (PTM) of proline (Pro) to 4-hydroxyproline (OH-Pro) in metformin-associated lactic acidosis and in metformin-treated patients with Becker muscular dystrophy (BMD). Pro and OH-Pro were measured simultaneously by gas chromatography-mass spectrometry before, during, and after renal replacement therapy in a patient admitted to the intensive care unit (ICU) because of MALA. At admission to the ICU, plasma metformin concentration was 175 µM, with a corresponding lactate concentration of 20 mM and a blood pH of 7.1. Throughout ICU admission, the Pro concentration was lower compared to healthy controls. Renal excretion of OH-Pro was initially high and decreased over time. Moreover, during the first 12 h of ICU admission, OH-Pro seems to be renally secreted while thereafter, it was reabsorbed. Our results suggest that MALA is associated with hyper-hydroxyprolinuria due to elevated PTM of Pro to OH-Pro by prolyl-hydroxylase and/or inhibition of OH-Pro metabolism in the kidneys. In BMD patients, metformin, at the therapeutic dose of 3 × 500 mg per day for 6 weeks, increased the urinary excretion of OH-Pro suggesting elevation of Pro hydroxylation to OH-Pro. Our study suggests that metformin induces specifically the expression/activity of prolyl-hydroxylase in metformin intoxication and BMD.
Collapse
Affiliation(s)
- Svetlana Baskal
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Rene A Posma
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Bollenbach
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Willem Dieperink
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten W Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Zeng Q, Zhou TT, Huang WJ, Huang XT, Huang L, Zhang XH, Sang XX, Luo YY, Tian YM, Wu B, Liu L, Luo ZQ, He B, Liu W, Tang SY. Asarinin attenuates bleomycin-induced pulmonary fibrosis by activating PPARγ. Sci Rep 2023; 13:14706. [PMID: 37679587 PMCID: PMC10485066 DOI: 10.1038/s41598-023-41933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that lacks effective treatment modalities. Once patients are diagnosed with IPF, their median survival is approximately 3-5 years. PPARγ is an important target for the prevention and treatment of pulmonary fibrosis. Asarinin is a lignan compound that can be extracted from food plant Asarum heterotropoides. In this study, we investigated the therapeutic effects of asarinin in a pulmonary fibrosis model constructed using bleomycin in mice and explored the underlying mechanisms. Intraperitoneal administration of asarinin to mice with pulmonary fibrosis showed that asarinin effectively attenuated pulmonary fibrosis, and this effect was significantly inhibited by the PPARγ inhibitor GW9662. Asarinin inhibited TGF-β1-induced fibroblast-to-myofibroblast transition in vitro, while GW9662 and PPARγ gene silencing significantly inhibited this effect. In addition, asarinin inhibited not only the canonical Smad pathway of TGF-β but also the non-canonical AKT and MAPK pathways by activating PPARγ. Our study demonstrates that asarinin can be used as a therapeutic agent for pulmonary fibrosis, and that PPARγ is its key target.
Collapse
Affiliation(s)
- Qian Zeng
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ting-Ting Zhou
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wen-Jie Huang
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Lei Huang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Hua Zhang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Xue Sang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yu-Yang Luo
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yu-Mei Tian
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Bin Wu
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin Liu
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zi-Qiang Luo
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bin He
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China.
| | - Wei Liu
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
5
|
Dsouza NN, Alampady V, Baby K, Maity S, Byregowda BH, Nayak Y. Thalidomide interaction with inflammation in idiopathic pulmonary fibrosis. Inflammopharmacology 2023; 31:1167-1182. [PMID: 36966238 PMCID: PMC10039777 DOI: 10.1007/s10787-023-01193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/04/2023] [Indexed: 03/27/2023]
Abstract
The "Thalidomide tragedy" is a landmark in the history of the pharmaceutical industry. Despite limited clinical trials, there is a continuous effort to investigate thalidomide as a drug for cancer and inflammatory diseases such as rheumatoid arthritis, lepromatous leprosy, and COVID-19. This review focuses on the possibilities of targeting inflammation by repurposing thalidomide for the treatment of idiopathic pulmonary fibrosis (IPF). Articles were searched from the Scopus database, sorted, and selected articles were reviewed. The content includes the proven mechanisms of action of thalidomide relevant to IPF. Inflammation, oxidative stress, and epigenetic mechanisms are major pathogenic factors in IPF. Transforming growth factor-β (TGF-β) is the major biomarker of IPF. Thalidomide is an effective anti-inflammatory drug in inhibiting TGF-β, interleukins (IL-6 and IL-1β), and tumour necrosis factor-α (TNF-α). Thalidomide binds cereblon, a process that is involved in the proposed mechanism in specific cancers such as breast cancer, colon cancer, multiple myeloma, and lung cancer. Cereblon is involved in activating AMP-activated protein kinase (AMPK)-TGF-β/Smad signalling, thereby attenuating fibrosis. The past few years have witnessed an improvement in the identification of biomarkers and diagnostic technologies in respiratory diseases, partly because of the COVID-19 pandemic. Hence, investment in clinical trials with a systematic plan can help repurpose thalidomide for pulmonary fibrosis.
Collapse
Affiliation(s)
- Nikitha Naomi Dsouza
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Varun Alampady
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bharath Harohalli Byregowda
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
de Oliveira Rodrigues Junior E, de Santana IR, Durço AO, Conceição LSR, Barreto AS, Menezes IAC, Roman-Campos D, Dos Santos MRV. The effects of flavonoids in experimental sepsis: A systematic review and meta-analysis. Phytother Res 2023. [PMID: 37115723 DOI: 10.1002/ptr.7846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Sepsis is a host's dysregulated immune response to an infection associated with systemic inflammation and excessive oxidative stress, which can cause multiple organ failure and death. The literature suggests that flavonoids, a broad class of secondary plant metabolites, have numerous biological activities which can be valuable in the treatment of sepsis. This study aimed to review the effects of flavonoids on experimental sepsis, focusing mainly on survival rate, and also summarizing information on its mechanisms of action. We searched in the main databases up to November 2022 using relevant keywords, and data were extracted and analyzed qualitatively and quantitatively. Thirty-two articles met the study criteria for review and 29 for meta-analysis. Overall, 30 different flavonoids were used in the studies. The flavonoids were able to strongly inhibit inflammatory response by reducing the levels of important pro-inflammatory mediators, for example, tumor necrosis factor-alpha and interleukin-1β, oxidative stress, and showed antibacterial and anti-apoptotic actions. The meta-analysis found an increase of 50% in survival rate of the animals treated with flavonoids. They appear to act as multi-target drugs and may be an excellent therapeutic alternative to reduce a number of the complications caused by sepsis, and consequently, to improve survival rate.
Collapse
Affiliation(s)
| | - Izabel Rodrigues de Santana
- Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| | - Aimée Obolari Durço
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| | - Lino Sérgio Rocha Conceição
- Department of Physical Therapy, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| | - André Sales Barreto
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
- Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | | | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Márcio Roberto Viana Dos Santos
- Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| |
Collapse
|