1
|
Ding H, Liu D, He J, Zhou D, Wang C, Yang C, Xia Z. The Role of the Sirt1/Foxo3a Pathway in Mitigating Myocardial Ischemia-Reperfusion Injury by Dexmedetomidine. Chem Biol Drug Des 2025; 105:e70100. [PMID: 40230274 PMCID: PMC11997638 DOI: 10.1111/cbdd.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) significantly affects the prognosis of cardiac surgery patients. The anesthetic dexmedetomidine (Dex) has shown protective effects against ischemia-reperfusion injury in cardiomyocytes; however, its exact mechanism remains unclear. In this study, hypoxia/reoxygenation (H/R) and ischemia/reperfusion (I/R) models were used to investigate the effects of Dex on H9c2 cells and MIRI in mice. The roles of the Sirtuin 1/Forkhead box O3a (Sirt1/FoxO3a) pathway in the protective effects of Dex were explored using the Sirt1 inhibitor EX527 and FoxO3a gene silencing. Results showed that H/R significantly reduced H9c2 cell viability, increased Lactate Dehydrogenase (LDH) leakage, and elevated reactive oxygen species (ROS) production. Dex pretreatment reversed these effects. Additionally, Dex significantly reduced the expression of Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2), cleaved caspase-3, Beclin-1, and microtubule-associated protein 1A/1B-light chain 3B (LC3B), inhibiting apoptosis and autophagy while increasing the expression of p62, Sirt1, and FoxO3a. The protective effects of Dex against H/R injury were abolished by EX527 or FoxO3a silencing. In the mouse MIRI model, Dex pretreatment decreased serum LDH and Creatine Kinase-MB (CK-MB) levels, reduced myocardial infarct size and cardiac injury, and significantly improved left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS). These protective effects were markedly reversed by EX527. These findings indicate that Dex alleviates MIRI by restoring Sirt1 expression and activating FoxO3a.
Collapse
Affiliation(s)
- Hanlin Ding
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Danyong Liu
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
- Shenzhen Institute of Research and Innovation, the University of Hong KongShenzhenChina
| | - Jianfeng He
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
- Shenzhen Institute of Research and Innovation, the University of Hong KongShenzhenChina
| | - Dongcheng Zhou
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Chan Wang
- Department of AnesthesiologyThe First People's Hospital of Jingmen CityJingmenHubeiChina
| | - Changming Yang
- Department of AnesthesiologyThe First People's Hospital of Jingmen CityJingmenHubeiChina
| | - Zhongyuan Xia
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
2
|
Wen X, Ji Y, Tang H, Jin Z, Su W, Zhou L, Xia ZY, Li L, Lei S. Caveolin-3: therapeutic target for diabetic myocardial ischemia/reperfusion injury. Mol Med 2025; 31:80. [PMID: 40012041 DOI: 10.1186/s10020-025-01117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a major global health problem with high rates of mortality and disability, which is more severe in patients with diabetes. Substantial researches have documented that diabetic myocardium are more susceptible to I/R injury, but many current intervention strategies against myocardial I/R injury have limited effectiveness in diabetic hearts. Caveolin-3 (Cav-3) is the signature protein of caveolae and serves as a signal integration and transduction platform in the plasma membrane of cardiomyocytes, which plays a vital role in myocardial functions, metabolism and protection of multiple conditioning strategies against I/R injury. Nevertheless, numerous studies have revealed that the expression of Cav-3 is impaired in diabetic hearts, which contributes to increased vulnerability of myocardium to I/R injury and resistance to protective conditioning strategies. In this review, we outline the basic structure and function of Cav-3, emphatically present the unique role of Cav-3 as a signal integration and transduction element in diabetic myocardial I/R injury and discuss its therapeutic perspective in strategies against myocardial I/R injury in diabetes.
Collapse
Affiliation(s)
- Xinyu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan City, China
| | - Yanwei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan City, China
| | - Hepeng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan City, China
| | - Zhenshuai Jin
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan City, China
| | - Wating Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan City, China
| | - Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan City, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan City, China
| | - Lin Li
- Department of Anesthesiology, Affiliated RenHe Hospital of China, Second Clinical Medical College, Three Gorges University, Yichang, Hubei Province, China.
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan City, China.
| |
Collapse
|
3
|
Xu H, Yu Z, Zhu J, Liu H, Chen X, Jiang J, Zhu M, Li J. Types of cell death in diabetic cardiomyopathy: insights from animal models. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39719881 DOI: 10.3724/abbs.2024213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Approximately one-tenth of the global population is affected by diabetes mellitus, and its incidence continues to rise each year. In China, 1.4 million patients die from diabetes-related complications every year. Additionally, approximately 26% of patients with diabetes develop diabetic cardiomyopathy, with heart failure being one of the main causes of death in these patients. However, early detection of diabetic cardiomyopathy has proven to be difficult in a clinical setting; furthermore, there are limited guidelines and targeted means of prevention and treatment for this disease. In recent years, several studies have provided evidence for the occurrence of various forms of regulated cell death in diabetic myocardial cells, including apoptosis, necroptosis, ferroptosis, and cuproptosis, which are closely linked to the pathological progression of diabetic cardiomyopathy. Although most research on diabetic cardiomyopathy is currently in the animal trial phase, the inhibition of these regulatory cell death processes can limit or slow down the progression of diabetic cardiomyopathy. Therefore, this review discusses the appropriate animal experimental models currently available for diabetic cardiomyopathy and evaluates the roles of apoptosis, necroptosis, ferroptosis, and cuproptosis in diabetic cardiomyopathy. We hope to provide new methods and ideas for future research in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hongjiao Xu
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Zhuang Yu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haoran Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jihong Jiang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Minmin Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
4
|
Han D, Wang F, Jiang Q, Qiao Z, Zhuang Y, An Q, Li Y, Tang Y, Li C, Shen D. Enhancing Cardioprotection Through Neutrophil-Mediated Delivery of 18β-Glycyrrhetinic Acid in Myocardial Ischemia/Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406124. [PMID: 39264272 PMCID: PMC11558124 DOI: 10.1002/advs.202406124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Myocardial ischemia/reperfusion injury (MI/RI) generates reactive oxygen species (ROS) and initiates inflammatory responses. Traditional therapies targeting specific cytokines or ROS often prove inadequate. An innovative drug delivery system (DDS) is developed using neutrophil decoys (NDs) that encapsulate 18β-glycyrrhetinic acid (GA) within a hydrolyzable oxalate polymer (HOP) and neutrophil membrane vesicles (NMVs). These NDs are responsive to hydrogen peroxide (H2O2), enabling controlled GA release. Additionally, NDs adsorb inflammatory factors, thereby reducing inflammation. They exhibit enhanced adhesion to inflamed endothelial cells (ECs) and improved penetration. Once internalized by cardiomyocytes through clathrin-mediated endocytosis, NDs protect against ROS-induced damage and inhibit HMGB1 translocation. In vivo studies show that NDs preferentially accumulate in injured myocardium, reducing infarct size, mitigating adverse remodeling, and enhancing cardiac function, all while maintaining favorable biosafety profiles. This neutrophil-based system offers a promising targeted therapy for MI/RI by addressing both inflammation and ROS, holding potential for future clinical applications.
Collapse
Affiliation(s)
- Dongjian Han
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Fuhang Wang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Qingjiao Jiang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Zhentao Qiao
- Department of Vascular and Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Yuansong Zhuang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Quanxu An
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Yuhang Li
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Yazhe Tang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Chenyao Li
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Deliang Shen
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| |
Collapse
|
5
|
Ding Y, Su J, Shan B, Fu X, Zheng G, Wang J, Wu L, Wang F, Chai X, Sun H, Zhang J. Brown adipose tissue-derived FGF21 mediates the cardioprotection of dexmedetomidine in myocardial ischemia/reperfusion injury. Sci Rep 2024; 14:18292. [PMID: 39112671 PMCID: PMC11306229 DOI: 10.1038/s41598-024-69356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
Brown adipose tissue (BAT) plays a critical role in regulating cardiovascular homeostasis through the secretion of adipokines, such as fibroblast growth factor 21 (FGF21). Dexmedetomidine (DEX) is a selective α2-adrenergic receptor agonist with a protection against myocardial ischemia/reperfusion injury (MI/RI). It remains largely unknown whether or not BAT-derived FGF21 is involved in DEX-induced cardioprotection in the context of MI/RI. Herein, we demonstrated that DEX alleviated MI/RI and improved heart function through promoting the release of FGF21 from interscapular BAT (iBAT). Surgical iBAT depletion or supplementation with a FGF21 neutralizing antibody attenuated the beneficial effects of DEX. AMPK/PGC1α signaling-induced fibroblast growth factor 21 (FGF21) release in brown adipocytes is required for DEX-mediated cardioprotection since blockade of the AMPK/PGC1α axis weakened the salutary effects of DEX. Co-culture experiments showed that DEX-induced FGF21 from brown adipocytes increased the resistance of cardiomyocytes to hypoxia/reoxygenation (H/R) injury via modulating the Keap1/Nrf2 pathway. Our results provided robust evidence that the BAT-cardiomyocyte interaction is required for DEX cardioprotection, and revealed an endocrine role of BAT in DEX-mediating protection of hearts against MIRI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Jiabao Su
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Beiying Shan
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Xiao Fu
- Laboratory of Metabolic and Inflammatory Diseases, Wuxi School of Medicine, Jiangnan University, No.1800, Lihu Road, Wuxi, 214125, People's Republic of China
| | - Guanli Zheng
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Jiwen Wang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Lixue Wu
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Fangming Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, People's Republic of China
| | - Xiaoying Chai
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, People's Republic of China
| | - Haijian Sun
- Laboratory of Metabolic and Inflammatory Diseases, Wuxi School of Medicine, Jiangnan University, No.1800, Lihu Road, Wuxi, 214125, People's Republic of China.
| | - Jiru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China.
| |
Collapse
|
6
|
Zhu M, Yuan Z, Wen C, Wei X. DEX Inhibits H/R-induced Cardiomyocyte Ferroptosis by the miR-141-3p/lncRNA TUG1 Axis. Thorac Cardiovasc Surg 2024. [PMID: 38889747 DOI: 10.1055/s-0044-1787691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BACKGROUND Ferroptosis is emerging as a critical pathway in ischemia/reperfusion (I/R) injury, contributing to compromised cardiac function and predisposing individuals to sepsis and myocardial failure. The study investigates the underlying mechanism of dexmedetomidine (DEX) in hypoxia/reoxygenation (H/R)-induced ferroptosis in cardiomyocytes, aiming to identify novel targets for myocardial I/R injury treatment. METHODS H9C2 cells were subjected to H/R and treated with varying concentrations of DEX. Additionally, H9C2 cells were transfected with miR-141-3p inhibitor followed by H/R treatment. Levels of miR-141-3p, long noncoding RNA (lncRNA) taurine upregulated 1 (TUG1), Fe2+, glutathione (GSH), and malondialdehyde were assessed. Reactive oxygen species (ROS) generation was measured via fluorescent labeling. Expression of ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) was determined using Western blot. The interaction between miR-141-3p and lncRNA TUG1 was evaluated through RNA pull-down assay and dual-luciferase reporter gene assays. The stability of lncRNA TUG1 was assessed using actinomycin D. RESULTS DEX ameliorated H/R-induced cardiomyocyte injury and elevated miR-141-3p expression in cardiomyocytes. DEX treatment increased cell viability, Fe2+, and ROS levels while decreasing ACSL4 protein expression. Furthermore, DEX upregulated GSH and GPX4 protein levels. miR-141-3p targeted lncRNA TUG1, reducing its stability and overall expression. Inhibition of miR-141-3p or overexpression of lncRNA TUG1 partially reversed the inhibitory effect of DEX on H/R-induced ferroptosis in cardiomyocytes. CONCLUSION DEX mitigated H/R-induced ferroptosis in cardiomyocytes by upregulating miR-141-3p expression and downregulating lncRNA TUG1 expression, unveiling a potential therapeutic strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Mei Zhu
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| | - Zhiguo Yuan
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| | - Chuanyun Wen
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| | - Xiaojia Wei
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| |
Collapse
|
7
|
Su Z, Zheng Y, Han M, Zhao D, Huang Z, Zhou Y, Hu W. Breviscapine alleviates myocardial ischemia-reperfusion injury in diabetes rats. Acta Cir Bras 2024; 39:e390224. [PMID: 38422326 PMCID: PMC10911477 DOI: 10.1590/acb390224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 03/02/2024] Open
Abstract
PURPOSE To investigate the protective effect of breviscapine on myocardial ischemia-reperfusion injury (MIRI) in diabetes rats. METHODS Forty rats were divided into control, diabetes, MIRI of diabetes, and treatment groups. The MIRI of diabetes model was established in the latter two groups. Then, the treatment group was treated with 100 mg/kg breviscapine by intraperitoneal injection for 14 consecutive days. RESULTS After treatment, compared with MIRI of diabetes group, in treatment group the serum fasting blood glucose, fasting insulin, homeostasis model assessment of insulin resistance, and glycosylated hemoglobin levels decreased, the serum total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol levels decreased, the serum high-density lipoprotein cholesterol level increased, the heart rate decreased, the mean arterial pressure, left ventricular ejection fraction, and fractional shortening increased, the serum cardiac troponin I, and creatine kinase-MB levels decreased, the myocardial tumor necrosis factor α and interleukin-6 levels decreased, the myocardial superoxide dismutase level increased, and the myocardial malondialdehyde level decreased (all P < 0.05). CONCLUSIONS For treating MIRI of diabetes in rats, the breviscapine can reduce the blood glucose and lipid levels, improve the cardiac function, reduce the myocardial injury, and decrease the inflammatory response and oxidative stress, thus exerting the alleviating effect.
Collapse
Affiliation(s)
- Zhenhong Su
- Hubei Polytechnic University – Medical College – Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention – Huangshi, China
| | - Yuanmei Zheng
- Hubei Polytechnic University – Medical College – Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention – Huangshi, China
| | - Meng Han
- Hubei Polytechnic University – Medical College – Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention – Huangshi, China
| | - Deqing Zhao
- Affiliated Hospital of Hubei Polytechnic University – Huangshi Central Hospital – Huangshi, China
| | - Zhi Huang
- Zhejiang Chinese Medical University – Chinese Herbal Pieces Co. Ltd. – Quzhou, China
| | - Yijun Zhou
- Zhejiang Chinese Medical University – Chinese Herbal Pieces Co. Ltd. – Quzhou, China
| | - Wenbing Hu
- Affiliated Hospital of Hubei Polytechnic University – Huangshi Central Hospital – Huangshi, China
| |
Collapse
|
8
|
Jiang Y, Cai Y, Han R, Xu Y, Xia Z, Xia W. Salvianolic acids and its potential for cardio-protection against myocardial ischemic reperfusion injury in diabetes. Front Endocrinol (Lausanne) 2024; 14:1322474. [PMID: 38283744 PMCID: PMC10811029 DOI: 10.3389/fendo.2023.1322474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
The incidence of diabetes and related mortality rate increase yearly in modern cities. Additionally, elevated glucose levels can result in an increase of reactive oxygen species (ROS), ferroptosis, and the disruption of protective pathways in the heart. These factors collectively heighten the vulnerability of diabetic individuals to myocardial ischemia. Reperfusion therapies have been effectively used in clinical practice. There are limitations to the current clinical methods used to treat myocardial ischemia-reperfusion injury. As a result, reducing post-treatment ischemia/reperfusion injury remains a challenge. Therefore, efforts are underway to provide more efficient therapy. Salvia miltiorrhiza Bunge (Danshen) has been used for centuries in ancient China to treat cardiovascular diseases (CVD) with rare side effects. Salvianolic acid is a water-soluble phenolic compound with potent antioxidant properties and has the greatest hydrophilic property in Danshen. It has recently been discovered that salvianolic acids A (SAA) and B (SAB) are capable of inhibiting apoptosis by targeting the JNK/Akt pathway and the NF-κB pathway, respectively. This review delves into the most recent discoveries regarding the therapeutic and cardioprotective benefits of salvianolic acid for individuals with diabetes. Salvianolic acid shows great potential in myocardial protection in diabetes mellitus. A thorough understanding of the protective mechanism of salvianolic acid could expand its potential uses in developing medicines for treating diabetes mellitus related myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ronghui Han
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| | - Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| |
Collapse
|
9
|
Ding X, Zhu C, Wang W, Li M, Ma C, Gao B. SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion. Pharmacol Res 2024; 199:106957. [PMID: 37820856 DOI: 10.1016/j.phrs.2023.106957] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/09/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
SIRT1 is a highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase. It is involved in the regulation of various pathophysiological processes, including cell proliferation, survival, differentiation, autophagy, and oxidative stress. Therapeutic activation of SIRT1 protects the heart and cardiomyocytes from pathology-related stress, particularly myocardial ischemia/reperfusion (I/R). Autophagy is an important metabolic pathway for cell survival during energy or nutrient deficiency, hypoxia, or oxidative stress. Autophagy is a double-edged sword in myocardial I/R injury. The activation of autophagy during the ischemic phase removes excess metabolic waste and helps ensure cardiomyocyte survival, whereas excessive autophagy during reperfusion depletes the cellular components and leads to autophagic cell death. Increasing research on I/R injury has indicated that SIRT1 is involved in the process of autophagy and regulates myocardial I/R. SIRT1 regulates autophagy through various pathways, such as the deacetylation of FOXOs, ATGs, and LC3. Recent studies have confirmed that SIRT1-mediated autophagy plays different roles at different stages of myocardial I/R injury. By targeting the mechanism of SIRT1-mediated autophagy at different stages of I/R injury, new small-molecule drugs, miRNA activators, or blockers can be developed. For example, resveratrol, sevoflurane, quercetin, and melatonin in the ischemic stage, coptisine, curcumin, berberine, and some miRNAs during reperfusion, were involved in regulating the SIRT1-autophagy axis, exerting a cardioprotective effect. Here, we summarize the possible mechanisms of autophagy regulation by SIRT1 in myocardial I/R injury and the related molecular drug applications to identify strategies for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoqing Ding
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wenhong Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Mengying Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chunwei Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Binghong Gao
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
10
|
Yang L, Jian Y, Zhang ZY, Qi BW, Li YB, Long P, Yang Y, Wang X, Huang S, Huang J, Zhou LF, Ma J, Jiang CQ, Hu YH, Xiao WJ. Network-pharmacology-based research on protective effects and underlying mechanism of Shuxin decoction against myocardial ischemia/reperfusion injury with diabetes. World J Diabetes 2023; 14:1057-1076. [PMID: 37547579 PMCID: PMC10401449 DOI: 10.4239/wjd.v14.i7.1057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/ reperfusion injury (MI/RI). Shuxin decoction (SXT) is a proven recipe modi-fication from the classic herbal formula "Wu-tou-chi-shi-zhi-wan" according to the traditional Chinese medicine theory. It has been successfully used to alleviate secondary MI/RI in patients with diabetes mellitus in the clinical setting. However, the underlying mechanism is still unclear.
AIM To further determine the mechanism of SXT in attenuating MI/RI associated with diabetes.
METHODS This paper presents an ensemble model combining network pharmacology and biology. The Traditional Chinese Medicine System Pharmacology Database was accessed to select key components and potential targets of the SXT. In parallel, therapeutic targets associated with MI/RI in patients with diabetes were screened from various databases including Gene Expression Omnibus, DisGeNet, Genecards, Drugbank, OMIM, and PharmGKB. The potential targets of SXT and the therapeutic targets related to MI/RI in patients with diabetes were intersected and subjected to bioinformatics analysis using the Database for Annotation, Visualization and Integrated Discovery. The major results of bioinformatics analysis were subsequently validated by animal experiments.
RESULTS According to the hypothesis derived from bioinformatics analysis, SXT could possibly ameliorate lipid metabolism disorders and exert anti-apoptotic effects in MI/RI associated with diabetes by reducing oxidized low density lipoprotein (LDL) and inhibiting the advanced glycation end products (AGE)-receptor for AGE (RAGE) signaling pathway. Subsequent animal experiments confirmed the hypothesis. The treatment with a dose of SXT (2.8 g/kg/d) resulted in a reduction in oxidized LDL, AGEs, and RAGE, and regulated the level of blood lipids. Besides, the expression of apoptosis-related proteins such as Bax and cleaved caspase 3 was down-regulated, whereas Bcl-2 expression was up-regulated. The findings indicated that SXT could inhibit myocardial apoptosis and improve cardiac function in MI/RI in diabetic rats.
CONCLUSION This study indicated the active components and underlying molecular therapeutic mechanisms of SXT in MI/RI with diabetes. Moreover, animal experiments verified that SXT could regulate the level of blood lipids, alleviate cardiomyocyte apoptosis, and improve cardiac function through the AGE-RAGE signaling pathway.
Collapse
Affiliation(s)
- Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
| | - Yang Jian
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Zai-Yuan Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China
| | - Bao-Wen Qi
- South China Hospital of Shenzhen University, Shenzhen 518116, Guangdong Province, China
| | - Yu-Bo Li
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Yao Yang
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
| | - Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
| | - Jing Huang
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China
| | - Long-Fu Zhou
- Department of Biomedical Engineering, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Jie Ma
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Chang-Qing Jiang
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Yong-He Hu
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China
| | - Wen-Jing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| |
Collapse
|
11
|
Wallace SR, Pagano PJ, Kračun D. MicroRNAs in the Regulation of NADPH Oxidases in Vascular Diabetic and Ischemic Pathologies: A Case for Alternate Inhibitory Strategies? Antioxidants (Basel) 2022; 12:70. [PMID: 36670932 PMCID: PMC9854786 DOI: 10.3390/antiox12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Since their discovery in the vasculature, different NADPH oxidase (NOX) isoforms have been associated with numerous complex vascular processes such as endothelial dysfunction, vascular inflammation, arterial remodeling, and dyslipidemia. In turn, these often underlie cardiovascular and metabolic pathologies including diabetes mellitus type II, cardiomyopathy, systemic and pulmonary hypertension and atherosclerosis. Increasing attention has been directed toward miRNA involvement in type II diabetes mellitus and its cardiovascular and metabolic co-morbidities in the search for predictive and stratifying biomarkers and therapeutic targets. Owing to the challenges of generating isoform-selective NOX inhibitors (NOXi), the development of specific NOXis suitable for therapeutic purposes has been hindered. In that vein, differential regulation of specific NOX isoforms by a particular miRNA or combina-tion thereof could at some point become a reasonable approach for therapeutic targeting under some circumstances. Whereas administration of miRNAs chronically, or even acutely, to patients poses its own set of difficulties, miRNA-mediated regulation of NOXs in the vasculature is worth surveying. In this review, a distinct focus on the role of miRNAs in the regulation of NOXs was made in the context of type II diabetes mellitus and ischemic injury models.
Collapse
Affiliation(s)
- Sean R. Wallace
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Damir Kračun
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Yu F, Liu F, Luo JY, Zhao Q, Wang HL, Fang BB, Li XM, Yang YN. Targeted activation of ERK1/2 reduces ischemia and reperfusion injury in hyperglycemic myocardium by improving mitochondrial function. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1238. [PMID: 36544682 PMCID: PMC9761117 DOI: 10.21037/atm-22-5149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Background Diabetes can increase the risk of coronary heart disease, and also increase the mortality rate of coronary heart disease in diabetic patients. Although reperfusion therapy can preserve the viable myocardium, fatal reperfusion injury can also occur. Studies have shown that diabetes can aggravate myocardial ischemia-reperfusion injury, ERK1/2 can reduce myocardial ischemia-reperfusion injury, but its mechanism in hyperglycemic myocardial ischemia-reperfusion injury is unclear. This study sought to explore the mechanism of extracellular signal-regulated kinase 1/2 (ERK1/2) in hyperglycemic myocardial ischemia reperfusion (I/R) injury. Methods H9C2 cardiomyocytes were treated with high-glucose (HG) medium plus I/R stimulation to establish a hyperglycemia I/R model in vitro. The cells were treated with LM22B-10 (an ERK activator) or transfected with the constitutive activation of the mitogen-activated protein kinase 1 (CaMEK) gene. Myocardial cell apoptosis, mitochondria functional-related indicators, the oxidative stress indexes, and the expression levels of ERK1/2 protein were detected. Results The HG I/R injury intervention caused an increase in the ratio of apoptotic cardiomyocytes (P<0.05), but the phosphorylation level of the ERK1/2 protein did not increase further. Administering LM22B-10 or transfecting the CaMEK gene significantly activated the phosphorylation levels of ERK1/2 protein and reduced the proportion of cardiomyocyte apoptosis (P<0.05). HG I/R injury increased mitochondrial fission and reduced membrane potential. The intervention reduced the number of punctate mitochondria, increased the average network structure size and median branch length (P<0.01), increased the median network structure size and average branch length (P<0.05), and reduced the colocalization of Drp1 (Dynamin-Related protein1)/TOMM20 (Mitochondrial outer membrane translocation enzyme 20) (P<0.05) and Drp1 with serine 616 phosphorylation (Drp1s616) phosphorylation (P<0.01), thereby reducing mitochondrial fission, increasing membrane potential and mitochondrial function. HG I/R injury increased the level of oxidative stress, while administering LM22B-10 or transfecting the CaMEK gene reduced the level of oxidative stress (P<0.01). Conclusions Targeting the activation of ERK1/2 protein phosphorylation reduced mitochondrial fission, increased membrane potential and mitochondrial function, reduced oxidative stress and myocardial cell apoptosis, and alleviated hyperglycemia myocardial I/R injury.
Collapse
Affiliation(s)
- Fei Yu
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China;,Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China;,Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jun-Yi Luo
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China;,Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qian Zhao
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China;,Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong-Li Wang
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China;,Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bin-Bin Fang
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China;,Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiao-Mei Li
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi-Ning Yang
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China;,Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China;,Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|