1
|
Liang S, Dong Y, Chang Z, Guo P, Jia J, Yang G, Chen Y, Dong L, Xu X, Cai T, Li T, Fang Y, Sun W, Li L, Wang C, Song X. An integrative pharmacology-based study on the pharmacological activity and mechanism of xiaoji-chenpi formula (XCF) against MAFLD. Front Pharmacol 2025; 16:1521111. [PMID: 40124784 PMCID: PMC11925881 DOI: 10.3389/fphar.2025.1521111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a common chronic metabolic disease worldwide that seriously threatens human health. The Xiaoji-chenpi formula (XCF), derived from QingGanSan (QGS), has previously been proven to be clinically effective in MAFLD. However, its pharmacological activity and mechanism have not been studied in depth. In this study, we explored and determined the optimal amounts of cholesterol and fat additives (4% and 20%, respectively) for the modeling of zebrafish MAFLD via orthogonal tests. The zebrafish MAFLD model was used for preliminary screening and determination of the pharmacological activity of XCF on MAFLD. XCF significantly reduced the body mass index (BMI), improved the morphology of liver cells and reduced the number of lipid vacuoles, which were better than the corresponding pharmacological activity of silymarin and resveratrol in zebrafish with MAFLD. The four main active compounds in XCF were identified by HPLC analysis as chlorogenic acid, naringin, hesperidin and quercetin. MAFLD in the mouse model was induced by a high-fat diet (HFD), and the pharmacological activity and mechanism of XCF were investigated by measuring plasma and hepatic physiological indices. XCF reduced the plasma TC and TG levels, reduced the liver TC and TG levels, and relieved liver lipid accumulation and inflammation in the mice. Key differentially expressed genes were identified through transcriptomics and detected via western blotting. XCF regulated the levels of INSIG1, SREBP1, FASN, ACC, SPP1, LGALS3, TNF-α and IL-1β in the livers of the MAFLD mice and improved the disease status. Our research provides a basis for developing an effective functional product for treating the occurrence and progression of MAFLD.
Collapse
Affiliation(s)
- Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yang Dong
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Monitoring and Statistical Research Center, National Administration of Traditional Chinese Medicine, Beijing, China
| | - Zukang Chang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Pingping Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jinghan Jia
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Gangao Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yongning Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|
2
|
Liu YC, Chung CH, Lin CJ, Su SC, Kuo FC, Liu JS, Li PF, Huang CL, Ho LJ, Chang CY, Lin MS, Lin CP, Cheng AC, Lee CH, Hsieh CH, Hung YJ, Liu HY, Lu CH, Chien WC. The role of traditional Chinese medicine on fracture surgery, hospitalization, and total mortality risks in diabetic patients with osteoporosis. PLoS One 2024; 19:e0289455. [PMID: 38696479 PMCID: PMC11065294 DOI: 10.1371/journal.pone.0289455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Studies have confirmed that osteoporosis has been considered as one of the complications of diabetes, and the health hazards to patients are more obvious. This study is mainly based on the Taiwan National Health Insurance Database (TNHID). Through the analysis of TNHID, it is shown that the combined treatment of traditional Chinese medicine (TCM) medicine in patients of diabetes with osteoporosis (T2DOP) with lower related risks. METHODS According to the study design, 3131 patients selected from TNHID who received TCM treatment were matched by 1-fold propensity score according to gender, age, and inclusion date as the control group. Cox proportional hazards analyzes were performed to compare fracture surgery, hospitalization, and all-cause mortality during a mean follow-up from 2000 to 2015. RESULTS A total of 1055/1469/715 subjects (16.85%/23.46%/11.42%) had fracture surgery/inpatient/all-cause mortality of which 433/624/318 (13.83%/19.93%/10.16%) were in the TCM group) and 622/845/397 (19.87%/26.99%/12.68%) in the control group. Cox proportional hazards regression analysis showed that subjects in the TCM group had lower rates of fracture surgery, inpatient and all-cause mortality (adjusted HR = 0.467; 95% CI = 0.225-0.680, P<0.001; adjusted HR = 0.556; 95% CI = 0.330-0.751, P<0.001; adjusted HR = 0.704; 95% CI = 0.476-0.923, P = 0.012). Kaplan-Meier analysis showed that the cumulative risk of fracture surgery, inpatient and all-cause mortality was significantly different between the case and control groups (all log-rank p<0.001). CONCLUSION This study provides longitudinal evidence through a cohort study of the value of integrated TCM for T2DOP. More research is needed to fully understand the clinical significance of these results.
Collapse
Affiliation(s)
- Yi-Chen Liu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan, ROC
| | - Chien-Jung Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Sheng-Chiang Su
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Feng-Chih Kuo
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jhih-Syuan Liu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Peng-Fei Li
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chia-Luen Huang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Li-Ju Ho
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chun-Yung Chang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, ROC
| | - Ming-Shiun Lin
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chih-Ping Lin
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - An-Che Cheng
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chien-Hsing Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chang-Hsun Hsieh
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Jen Hung
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsin-Ya Liu
- BeYoung Research Institute, Taipei, Taiwan, ROC
| | - Chieh-Hua Lu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan, ROC
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
Liang J, Chen T, Xu H, Wang T, Gong Q, Li T, Liu X, Wang J, Wang Y, Xiong L. Echinacoside Exerts Antihepatic Fibrosis Effects in High-Fat Mice Model by Modulating the ACVR2A-Smad Pathway. Mol Nutr Food Res 2024; 68:e2300553. [PMID: 38366962 DOI: 10.1002/mnfr.202300553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/14/2024] [Indexed: 02/19/2024]
Abstract
SCOPE Nonalcoholic steatohepatitis (NASH) is an increasingly common chronic liver disease in which hepatic fibrosis is the major pathological change. The transforming growth factor β (TGF-β)/mall mothers against decapentaplegic (Smad) signaling is the main effector of fibrosis. Although the antifibrotic effect of echinacoside (Ech) on the liver has been indicated previously, the cellular and molecular mechanisms remain unclear. This study aims to investigate both in vivo and in vitro antifibrotic properties of Ech. METHODS AND RESULTS Cell viability and scratch/wound assays show that Ech significantly inhibits the proliferation, migration, and activation of human hepatic stellate LX-2 cells. In mice with high-fat diet-induced hepatic fibrosis, Ech treatment attenuates the progression of liver injury, inflammation, and fibrosis. Furthermore, transcriptome analysis and subsequent functional validation demonstrate that Ech achieves antifibrotic effects by the activin receptor type-2A (ACVR2A)-mediated TGF-β1/Smad signaling pathway; ultimately, ACVR2A is demonstrated to be an important target for hepatic fibrosis by inhibiting and inducing the expression of ACVR2A in LX-2 cells. CONCLUSION Ech exerts potent antifibrotic effects by inhibiting the ACVR2A-mediated TGF-β1/Smad signaling axis and may serve as an alternative treatment for hepatic fibrosis.
Collapse
Affiliation(s)
- Jie Liang
- Department of Medicine, Linfen Vocational and Technical College, Linfen, Shanxi, 041000, China
| | - Ting Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Honglei Xu
- Medical Security Center, The No. 983th Hospital of Joint Logistics Support Forces of Chinese PLA, Tianjin, 300142, China
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Qi Gong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tingting Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaoyan Liu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jing Wang
- Department of Pharmacy, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China
| | - Yun Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Liyan Xiong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Zhong Y, Hang L, Wang F, Shen B, Shen C, Xue Y, Jia H, Wang L, Yuan H. Herpetetrone nanosuspensions enhance drug solubility and bioavailability to improve anti-hepatic fibrosis effects. J Microencapsul 2023; 40:587-598. [PMID: 37733492 DOI: 10.1080/02652048.2023.2258974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
The aim of this study was to enhance the dissolution rate and oral bioavailability of herpetetrone (HPT) by preparing nanosuspensions (NSs) and evaluate the changes in its anti-hepatic fibrosis effect. Herpetetrone nanosuspension (HPT-NS) was prepared using the ultrasound-precipitation technique, and characterised on the basis of mean diameter, zeta potential (ZP), encapsulation efficiency percent (EE%), scanning electron microscopy (SEM), and X-ray powder diffraction (XRPD). In addition, the pharmacokinetics and anti-hepatic fibrosis activity were evaluated. HPT-NS prepared with the optimised formulation was found to be spherical with mean diameter of 177.48 ± 6.13 nm, polydispersity index (PDI) of 0.108 ± 0.002 and ZP of -17.28 ± 2.02 mV. The EE (m/m, %) was 83.25 ± 0.27. XRPD analyses confirmed that the amorphous state of HPT in HPT-NS remained unchanged. The dissolution rate of HPT-NS was significantly higher than that of HPT coarse suspensions (HPT-CSs). Following oral administration, Cmax and AUC0-t of HPT-NS showed a significant increase (p < 0.05). In vitro, HPT inhibited the proliferation of HSC-T6 cells and induced apoptosis by up-regulating the expression of Bax proteins and down-regulating the expression of Bcl-2 and TGF-β1 proteins. Compared with HPT-CS, HPT-NS exhibited a more pronounced anti-fibrotic effect. HPT-NS, as a new drug formulation designed to improve the solubility and bioavailability of the drug, shows promising potential in enhancing the anti-liver fibrosis effect.
Collapse
Affiliation(s)
- Yuji Zhong
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Lingyu Hang
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Fang Wang
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Baode Shen
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Chengying Shen
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yuye Xue
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Haiqiang Jia
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Liqiang Wang
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| |
Collapse
|
5
|
Melaibari M, Alkreathy HM, Esmat A, Rajeh NA, Shaik RA, Alghamdi AA, Ahmad A. Anti-Fibrotic Efficacy of Apigenin in a Mice Model of Carbon Tetrachloride-Induced Hepatic Fibrosis by Modulation of Oxidative Stress, Inflammation, and Fibrogenesis: A Preclinical Study. Biomedicines 2023; 11:biomedicines11051342. [PMID: 37239014 DOI: 10.3390/biomedicines11051342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Hepatic fibrosis is a major health problem all over the world, and there is no effective treatment to cure it. Hence, the current study sought to assess the anti-fibrotic efficacy of apigenin against CCl4-induced hepatic fibrosis in mice. METHODS Forty-eight mice were put into six groups. G1: Normal Control, G2: CCl4 Control, G3: Silymarin (100 mg/kg), G4 and G5: Apigenin (2 &20 mg/Kg), G6: Apigenin alone (20 mg/Kg). Groups 2, 3, 4, and 5 were given CCl4 (0.5 mL/kg. i.p.) twice/week for six weeks. The level of AST, ALT, TC, TG, and TB in serum and IL-1β, IL-6, and TNF-α in tissue homogenates were assessed. Histological studies by H&E staining and Immunostaining of liver tissues were also performed. RESULTS The CCl4-challenged group showed increased serum AST (4-fold), ALT (6-fold), and TB (5-fold). Both silymarin and apigenin treatments significantly improved these hepatic biomarkers. The CCl4-challenged group showed reduced levels of CAT (89%), GSH (53%), and increased MDA (3-fold). Both silymarin and apigenin treatments significantly altered these oxidative markers in tissue homogenates. The CCl4-treated group showed a two-fold increase in IL-1β, IL-6, and TNF-α levels. Silymarin and apigenin treatment considerably decreased the IL-1β, IL-6, and TNF-α levels. Apigenin treatment inhibited angiogenic activity, as evidenced by a decrease in VEGF (vascular endothelial growth factor) expression in liver tissues, and a decline in vascular endothelial cell antigen expression (CD34). CONCLUSIONS Finally, these data collectively imply that apigenin may have antifibrotic properties, which may be explained by its anti-inflammatory, antioxidant, and antiangiogenic activities.
Collapse
Affiliation(s)
- Maryam Melaibari
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda M Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Nisreen A Rajeh
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anwar A Alghamdi
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aftab Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Liu Y, Zheng Y, Yang Y, Liu K, Wu J, Gao P, Zhang C. Exosomes in liver fibrosis: The role of modulating hepatic stellate cells and immune cells, and prospects for clinical applications. Front Immunol 2023; 14:1133297. [PMID: 37020547 PMCID: PMC10067730 DOI: 10.3389/fimmu.2023.1133297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
Liver fibrosis is a global health problem caused by chronic liver injury resulting from various factors. Hepatic stellate cells (HSCs) have been found to play a major role in liver fibrosis, and pathological stimuli lead to their transdifferentiation into myofibroblasts. Complex multidirectional interactions between HSCs, immune cells, and cytokines are also critical for the progression of liver fibrosis. Despite the advances in treatments for liver fibrosis, they do not meet the current medical needs. Exosomes are extracellular vesicles of 30-150 nm in diameter and are capable of intercellular transport of molecules such as lipids, proteins and nucleic acids. As an essential mediator of intercellular communication, exosomes are involved in the physiological and pathological processes of many diseases. In liver fibrosis, exosomes are involved in the pathogenesis mainly by regulating the activation of HSCs and the interaction between HSCs and immune cells. Serum-derived exosomes are promising biomarkers of liver fibrosis. Exosomes also have promising therapeutic potential in liver fibrosis. Exosomes derived from mesenchymal stem cells and other cells exhibit anti-liver fibrosis effects. Moreover, exosomes may serve as potential therapeutic targets for liver fibrosis and hold promise in becoming drug carriers for liver fibrosis treatment.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Zheng
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianying Wu
- Department of Digestive Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chuantao Zhang, ; Peiyang Gao,
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chuantao Zhang, ; Peiyang Gao,
| |
Collapse
|
7
|
Zhao X, Liu L, Liu J. Treatment of type 2 diabetes mellitus using the traditional Chinese medicine Jinlida as an add-on medication: A systematic review and meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2022; 13:1018450. [PMID: 36325446 PMCID: PMC9618612 DOI: 10.3389/fendo.2022.1018450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Numerous randomized controlled trials (RCTs) conducted in China have shown that jinlida granules are a promising traditional Chinese medicine (TCM) for the treatment of persons with type 2 diabetes mellitus (T2DM). Controversial results have been reported in different RCTs. The aim of our study was to evaluate the adjuvant hypoglycemic effect of jinlida granules on persons with T2DM and to explore the source of heterogeneity between these RCTs. MATERIALS AND METHODS Medical article databases were individually searched by two authors for RCTs that provided data regarding the effect of jinlida granules in the treatment of T2DM before 1 June 2022. The methodological quality of the included RCTs was comprehensively assessed by two authors. Data from RCTs with low risk of bias were pooled using Stata SE 12.0 (random-effects model). Evidence derived from the meta-analysis will be assessed according to the GRADE system. RESULTS Twenty-two RCTs were eventually included in the systematic review and three RCTs with low risk of bias were analyzed in the meta-analysis. Compared with the control groups, significant changes were found in lowering glycosylated hemoglobin a1c (mean difference -0.283 with 95% CI -0.561, -0.004; P=0.046), and were not found in lowering 2-hour postprandial glucose (mean difference -0.314 with 95% CI -1.599, 0.972; P=0.632) and fasting blood glucose (mean difference -0.152 with 95% CI -0.778, -0.474; P=0.634) in the jinlida groups. The GRADE-assessed evidence quality for the outcomes was moderate. CONCLUSION The adjuvant hypoglycemic effect of jinlida granules on adult Chinese persons with T2DM was statistically found in lowering HbA1c and was not statistically found in lowering FPG and 2h-PG. Evidence grading should be considered moderate, and the results should be interpreted cautiously. Whether the efficacy of HbA1c-lowering related to clinical significance remains to be investigated in future RCTs. Differences in HbA1c, FPG and 2h-PG at baseline and high risk of bias were important source of heterogeneity between these RCTs. In order to objectively evaluate the efficacy of jinlida granules on T2DM, it is urgently needed that high-quality RCTs evaluating the hypoglycemic effect of jinlida granules in the treatment of qi-yin deficiency pattern T2DM. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42018085135.
Collapse
Affiliation(s)
- Xuemin Zhao
- Department of Internal Medicine, Chengde Medical University, Chengde, China
- *Correspondence: Xuemin Zhao,
| | - Linfei Liu
- Sericultural Research Institute, Chengde Medical University, Chengde, China
| | - Jing Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|