1
|
Reppas C, Chorianopoulou C, Karkaletsi I, Dietrich S, Bakolia A, Vertzoni M. Simulation of Antral Conditions for Estimating Drug Apparent Equilibrium Solubility after a High-Calorie, High-Fat Meal. Mol Pharm 2025; 22:871-881. [PMID: 39811984 PMCID: PMC11795529 DOI: 10.1021/acs.molpharmaceut.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
The simulation of antral conditions for estimating drug apparent equilibrium solubility after a high-calorie, high-fat meal is challenging. In this study, (1) we measured the apparent equilibrium solubility of two model lipophilic drugs, ketoconazole and danazol, in antral aspirates collected at various time points after a minced high-calorie, high-fat meal and a glass of water 30 min after initiation of meal administration, and we designated one point estimate for ketoconazole and one point estimate for danazol; (2) we evaluated the usefulness of FeSSGF-V2 and FEDGAS pH = 3 in reproducing the two point estimates; (3) we evaluated potential compositions of FeSSGF-V3 that simulate the pH, the buffer capacity toward both less acidic and more acidic values, and the antral lipid and protein contents with easily accessible, commercially available products, and (4) we identified the most useful composition of FeSSGF-V3 for reproducing the two point estimates. For both model drugs, apparent solubility in FeSSGF-V2 and in FEDGAS pH 3 deviated substantially from the corresponding point estimate. For FeSSGF-V3, hydrochloric acid, acetates, and FEDGASbuffer pH 3 were evaluated for regulating the pH and buffer capacity, FEDGASgel was used for simulating the lipid content, and Régilait skimmed milk powder was used for simulating the protein content. Level III FeSSGF-V3 prepared with hydrochloric acid, 6.1% (w/v) Régilait, and 2.83% (w/v) FEDGASgel, i.e., one-sixth of FEDGASgel concentration in FEDGAS pH 3, was comparatively the most useful medium for point estimating ketoconazole and danazol apparent solubility in antral contents after water administration in the fed state, induced as requested by regulatory authorities in oral drug bioavailability studies. Level III FeSSGF-V3 prepared by using hydrochloric acid as the principal pH controlling species could be useful in the evaluation of food effects on drug absorption with in silico physiologically based biopharmaceutics modeling approaches and, also, with biorelevant in vitro methodologies.
Collapse
Affiliation(s)
- Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | | | - Ioanna Karkaletsi
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Shirin Dietrich
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Andriani Bakolia
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| |
Collapse
|
2
|
Chai X, Pan F, Wang Q, Wang X, Li X, Qi D, Yi Z, Liu H, Zhang J, Zhang Y, Pan Y, Liu Y, Wang G. Identification, screening, and comprehensive evaluation of novel thrombin inhibitory peptides from the hirudo produced using pepsin. Front Pharmacol 2024; 15:1460053. [PMID: 39640485 PMCID: PMC11617586 DOI: 10.3389/fphar.2024.1460053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Purpose The inhibition of thrombin has proven to be an efficacious therapeutic approach for managing cardiovascular disease (CVD), with widespread implementation in clinical settings. Oral ingestion of peptides and protein drugs is influenced by gastrointestinal digestive enzymes. We aimed to evaluate the thrombin inhibitory properties of hirudo hydrolysates (HHS) produced by pepsin and propose a comprehensive approach to screen and evaluate thrombin inhibitors. Methods We evaluated the in vitro inhibitory properties of the hirudo extract, both before and after hydrolysis with pepsin, toward thrombin. We screened for the most potent thrombin inhibitory peptide (TIP) using nano liquid chromatography-tandem mass spectrometry (Nano LC-MS/MS) coupled with in silico analysis. Next, we employed the thrombin inhibition activity IC50 to investigate the interaction between TIP and thrombin, and conducted in vitro evaluations of its anticoagulant effects (APTT, TT, PT), as well as its ability to inhibit platelet aggregation. Furthermore, we utilized UV-Vis spectroscopy to explore structural changes in thrombin upon binding with TIP and employed molecular dynamics simulations to delve deeper into the potential atomic-level interaction modes between thrombin and TIP. Results The retention rate of thrombin inhibition for HHS was found to be between 60% and 75%. A total of 90 peptides from the HHS were identified using LC-MS/MS combined with de novo sequencing. Asn-Asp-Leu-Trp-Asp-Gln-Gly-Leu-Val-Ser-Gln-Asp-Leu (NDLWDQGLVSQDL, P1) was identified as the most potent thrombin inhibitory peptide after in silico screening (molecular docking and ADMET). Then, the in vitro study revealed that P1 had a high inhibitory effect on thrombin (IC50: 2,425.5 ± 109.7 μM). P1 exhibited a dose-dependent prolongation of the thrombin time (TT) and a reduction in platelet aggregation rate. Both UV-Vis spectroscopy and molecular dynamics simulations demonstrated that P1 binds effectively to thrombin. Conclusion Overall, the results suggested that HHS provides new insights for searching and evaluating potential antithrombotic compounds. The obtained P1 can be structurally optimized for in-depth evaluation in animal and cellular experiments.
Collapse
Affiliation(s)
- Xiaoyu Chai
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fulu Pan
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qianqian Wang
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Wang
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xueyan Li
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongying Qi
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zirong Yi
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huan Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiming Zhang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanli Pan
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing, China
| |
Collapse
|
3
|
Felicijan T, Rakoše I, Prislan M, Locatelli I, Bogataj M, Trontelj J. Application of a Novel Dissolution Medium with Lipids for In Vitro Simulation of the Postprandial Gastric Content. Pharmaceutics 2024; 16:1040. [PMID: 39204385 PMCID: PMC11359312 DOI: 10.3390/pharmaceutics16081040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Food can change various physiological parameters along the gastrointestinal tract, potentially impacting postprandial drug absorption. It is thus important to consider different in vivo conditions during in vitro studies. Therefore, a novel dissolution medium simulating variable postprandial pH values and lipid concentrations was developed and used in this study. Additionally, by establishing and validating a suitable analytical method, the effects of these parameters on the dissolution of a model drug, cinnarizine, and on its distribution between the lipid and aqueous phases of the medium were studied. Both parameters, pH value and lipid concentration, were shown to influence cinnarizine behavior in the in vitro dissolution studies. The amount of dissolved drug decreased with increasing pH due to cinnarizine's decreasing solubility. At pH values 5 and 7, the higher concentration of lipids in the medium increased drug dissolution, and most of the dissolved drug was distributed in the lipid phase. In all media with a lower pH of 3, dissolution was fast and complete, with a significant amount of drug distributed in the lipid phase. These results are in accordance with the in vivo observed positive food effect on cinnarizine bioavailability described in the literature. The developed medium, with its ability to easily adjust the pH level and lipid concentration, thus offers a promising tool for assessing the effect of co-ingested food on the dissolution kinetics of poorly soluble drugs.
Collapse
Affiliation(s)
| | | | | | | | - Marija Bogataj
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; (T.F.); (I.R.); (M.P.); (I.L.); (J.T.)
| | | |
Collapse
|
4
|
Kato M, Maruyama S, Watanabe N, Yamada R, Suzaki Y, Ishida M, Kanno H. Preliminary Investigation of a Rapid and Feasible Therapeutic Drug Monitoring Method for the Real-Time Estimation of Blood Pazopanib Concentrations. AAPS J 2024; 26:48. [PMID: 38622446 DOI: 10.1208/s12248-024-00918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Pazopanib is a multi-kinase inhibitor used to treat advanced/metastatic renal cell carcinoma and advanced soft tissue tumors; however, side effects such as diarrhea and hypertension have been reported, and dosage adjustment based on drug concentration in the blood is necessary. However, measuring pazopanib concentrations in blood using the existing methods is time-consuming; and current dosage adjustments are made using the results of blood samples taken at the patient's previous hospital visit (approximately a month prior). If the concentration of pazopanib could be measured during the waiting period for a doctor's examination at the hospital (in approximately 30 min), the dosage could be adjusted according to the patient's condition on that day. Therefore, we aimed to develop a method for rapidly measuring blood pazopanib concentrations (in approximately 25 min) using common analytical devices (a tabletop centrifuge and a spectrometer). This method allowed for pazopanib quantification in the therapeutic concentration range (25-50 μg/mL). Additionally, eight popular concomitant medications taken simultaneously with pazopanib did not interfere with the measurements. We used the developed method to measure blood concentration in two patients and obtained similar results to those measured using the previously reported HPLC method. By integrating it with the point of care and sample collection by finger pick, this method can be used for measurements in pharmacies and patients' homes. This method can maximize the therapeutic effects of pazopanib by dose adjustment to control adverse events.
Collapse
Affiliation(s)
- Masaru Kato
- Department of Bioanalytical Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Shinichi Maruyama
- Department of Bioanalytical Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
- Department of Pharmacy, Saiseikai Yokohamashi Tobu Hospital, 3-6-1 Shimosueyoshi Tsurumi-ku, Yokohama, Kanagawa, 230-8765, Japan
| | - Noriko Watanabe
- Department of Bioanalytical Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Risa Yamada
- Department of Bioanalytical Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yuki Suzaki
- Department of Bioanalytical Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masaru Ishida
- Department of Urology, Saiseikai Yokohamashi Tobu Hospital, 3-6-1 Shimosueyoshi Tsurumi-ku, Yokohama, Kanagawa, 230-8765, Japan
| | - Hiroshi Kanno
- Department of Pharmacy, Saiseikai Yokohamashi Tobu Hospital, 3-6-1 Shimosueyoshi Tsurumi-ku, Yokohama, Kanagawa, 230-8765, Japan
| |
Collapse
|
5
|
Gao D, Wang G, Wu H, Ren J. Physiologically-based pharmacokinetic modeling for optimal dosage prediction of olaparib when co-administered with CYP3A4 modulators and in patients with hepatic/renal impairment. Sci Rep 2023; 13:16027. [PMID: 37749178 PMCID: PMC10519932 DOI: 10.1038/s41598-023-43258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023] Open
Abstract
This study aimed to develop a physiologically-based pharmacokinetic (PBPK) model to predict the maximum plasma concentration (Cmax) and trough concentration (Ctrough) at steady-state of olaparib (OLA) in Caucasian, Japanese and Chinese. Furthermore, the PBPK model was combined with mean and 95% confidence interval to predict optimal dosing regimens of OLA when co-administered with CYP3A4 modulators and administered to patients with hepatic/renal impairment. The dosing regimens were determined based on safety and efficacy PK threshold Cmax (< 12,500 ng/mL) and Ctrough (772-2500 ng/mL). The population PBPK model for OLA was successfully developed and validated, demonstrating good consistency with clinically observed data. The ratios of predicted to observed values for Cmax and Ctrough fell within the range of 0.5 to 2.0. When OLA was co-administered with a strong or moderate CYP3A4 inhibitor, the recommended dosing regimens should be reduced to 100 mg BID and 150 mg BID, respectively. Additionally, the PBPK model also suggested that OLA could be not recommended with a strong or moderate CYP3A4 inducer. For patients with moderate hepatic and renal impairment, the dosing regimens of OLA were recommended to be reduced to 200 mg BID and 150 mg BID, respectively. In cases of severe hepatic and renal impairment, the PBPK model suggested a dosing regimen of 100 mg BID for OLA. Overall, this present PBPK model can determine the optimal dosing regimens for various clinical scenarios involving OLA.
Collapse
Affiliation(s)
- Dongmei Gao
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing, 101500, China
| | - Honghai Wu
- Department of Clinical Pharmacy, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Jiawei Ren
- North China Electric Power University, No.2, Beinong Road, Huilongguan, Changping District, Beijing, 102206, China.
| |
Collapse
|
6
|
Gao D, Wang G, Wu H, Wu J, Zhao X. Prediction for Plasma Trough Concentration and Optimal Dosing of Imatinib under Multiple Clinical Situations Using Physiologically Based Pharmacokinetic Modeling. ACS OMEGA 2023; 8:13741-13753. [PMID: 37091368 PMCID: PMC10116519 DOI: 10.1021/acsomega.2c07967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
(1) Purpose: This study aimed to develop a physiologically based pharmacokinetic (PBPK) model to predict the trough concentration (C trough) of imatinib (IMA) at steady state in patients and to explore the role of free concentration (f up), α1-acid glycoprotein (AGP) level, and organic cation transporter 1 (OCT1) activity/expression in clinical efficacy. (2) Methods: The population PBPK model was built using physicochemical and biochemical properties, metabolizing and transporting kinetics, tissue distribution, and human physiological parameters. (3) Results: The PBPK model successfully predicted the C trough of IMA administered alone in chronic phase (CP) and accelerated phase (AP) patients, the C trough of IMA co-administered with six modulators, and C trough in CP patients with hepatic impairment. Most of the ratios between predicted and observed data are within 0.70-1.30. Additionally, the recommendations for dosing adjustments for IMA have been given under multiple clinical uses. The sensitivity analysis showed that exploring the f up and AGP level had a significant influence on the plasma C trough of IMA. Meanwhile, the simulations also revealed that OCT1 activity and expression had a significant impact on the intracellular C trough of IMA. (4) Conclusion: The current PBPK model can accurately predict the IMA C trough and provide appropriate dosing adjustment recommendations in a variety of clinical situations.
Collapse
Affiliation(s)
- Dongmei Gao
- Department
of Medical Oncology, Bethune International
Peace Hospital, Shijiazhuang 050082, China
| | - Guopeng Wang
- Zhongcai
Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China
| | - Honghai Wu
- Department
of Clinical Pharmacy, Bethune International
Peace Hospital, Shijiazhuang 050082, China
| | - JinHua Wu
- Sichuan
Cancer Hospital & Institute, Sichuan Cancer Center, School of
Medicine, University of Electronic Science
and Technology of China, Chengdu 610041, China
- . Phone: +86
15928616219
| | - Xiaoang Zhao
- Institute
of Chinese Material Medica China Academy of Chinese Medical Sciences, Beijing 100700, China
- . Phone: +86 13811372687
| |
Collapse
|