1
|
Ma L, Wang J, Zhou R, Chen M, Huang Z, Lin S. Traditional Chinese Medicine-derived formulations and extracts modulating the PI3K/AKT pathway in Alzheimer's disease. Front Pharmacol 2025; 16:1528919. [PMID: 40166467 PMCID: PMC11955602 DOI: 10.3389/fphar.2025.1528919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by memory decline, cognitive impairment, and behavioral abnormalities. Pathologically, AD is marked by neurofibrillary tangles caused by excessive phosphorylation of Tau protein and abnormal deposition of β-amyloid (Aβ) in the brain. The PI3K/AKT signaling pathway plays a crucial role in the development, survival, and metabolic regulation of the central nervous system, particularly in neuronal growth, differentiation, and apoptosis. However, this pathway is often inhibited in AD patients.In recent years, studies have shown that herbal formulations and extracts derived from Traditional Chinese Medicine (TCM) can regulate the PI3K/AKT signaling pathway, thereby improving AD pathological models. This study reviews fundamental research on both active metabolites and compound formulations from TCM for the treatment of AD, targeting the PI3K/AKT signaling pathway.Keywords include "Alzheimer's disease" "AD" "dementia" "PI3K" "AKT" "Traditional Chinese Medicine" "Chinese herbology" "Chinese medicine" and "TCM".The study is based on relevant literature published over the past 15 years, primarily sourced from electronic databases such as Web of Science, PubMed, CNKI, Wanfang, and VIP databases.The findings indicate that herbal formulations and extracts derived from TCM can mitigate AD pathology by regulating the PI3K/AKT signaling pathway, reducing Tau protein phosphorylation and Aβ deposition, inhibiting inflammatory responses and oxidative stress, and alleviating neuronal apoptosis. This study enhances our understanding of the anti-AD mechanisms of TCM through the PI3K/AKT pathway and offers new insights for the future.
Collapse
Affiliation(s)
- Lan Ma
- Department of Neurology, Wenzhou Traditional Chinese Medicine (TCM) Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Jing Wang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Rong Zhou
- Department of Neurology, Wenzhou Traditional Chinese Medicine (TCM) Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Miao Chen
- Department of Neurology, Wenzhou Traditional Chinese Medicine (TCM) Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Zuxiu Huang
- Department of Neurology, Wenzhou Traditional Chinese Medicine (TCM) Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Shuyang Lin
- Department of Neurology, Wenzhou Traditional Chinese Medicine (TCM) Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Zhang S, Yang Y, Zhang R, Gao J, Wu M, Wang J, Sheng J, Sun P. The Potential Mechanism of Alpiniae oxyphyllae Fructus Against Hyperuricemia: An Integration of Network Pharmacology, Molecular Docking, Molecular Dynamics Simulation, and In Vitro Experiments. Nutrients 2024; 17:71. [PMID: 39796505 PMCID: PMC11723258 DOI: 10.3390/nu17010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Alpiniae oxyphyllae Fructus (AOF) is a medicinal and edible resource that holds potential to ameliorate hyperuricemia (HUA), yet its mechanism of action warrants further investigation. Methods: We performed network pharmacology, molecular docking, molecular dynamics simulation, and in vitro experiments to investigate the potential action and mechanism of AOF against HUA. Results: The results indicate that 48 potential anti-HUA targets for 4 components derived from AOF were excavated and predicted through public databases. Gene Ontology (GO) enrichment analysis indicated that there are 190 entries related to biological process, 24 entries related to cellular component, 42 entries related to molecular function, and 44 entries related to Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. The results of molecular docking showed that the main active ingredients of AOF may have potential therapeutic effects on immune system disorders and inflammation caused by HUA by binding to targets including peroxisome-proliferator-activated receptor gamma (PPARG), estrogen receptor 1 (ESR1), prostaglandin G/H synthase 2 (PTGS2), and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). Subsequently, we further determined the stability of the complex between the core active ingredient and the core target proteins by molecular dynamics simulation. The results of cell experiments demonstrated that stigmasterol as the core active ingredient derived from AOF significantly upregulated the expression levels of ESR1 and PPARG (p < 0.001) to exert an anti-HUA effect. Conclusions: In summary, we have systematically elucidated that the mechanism of main active ingredients derived from AOF mainly exert their pharmacological effects by acting on multiple targets in this study. Our studies will provide a scientific basis for the precise development and utilization of AOF.
Collapse
Affiliation(s)
- Shuanggou Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (S.Z.); (R.Z.); (J.W.); (J.S.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuanfei Yang
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (J.G.); (M.W.)
| | - Ruohan Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (S.Z.); (R.Z.); (J.W.); (J.S.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jian Gao
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (J.G.); (M.W.)
| | - Mengyun Wu
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (J.G.); (M.W.)
| | - Jing Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (S.Z.); (R.Z.); (J.W.); (J.S.)
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (J.G.); (M.W.)
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (S.Z.); (R.Z.); (J.W.); (J.S.)
| | - Peiyuan Sun
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (S.Z.); (R.Z.); (J.W.); (J.S.)
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (J.G.); (M.W.)
| |
Collapse
|
3
|
Zhang H, Wang H, Zhou H, Shi J, Wan Z, Li G, Yan M. Synergistic effect in the co-extraction of Ginseng and Schisandra protein. Front Nutr 2024; 11:1482125. [PMID: 39545051 PMCID: PMC11562853 DOI: 10.3389/fnut.2024.1482125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Ginseng and Schisandra are traditional Chinese plants that have been used in culinary practices and are renowned for their immune-boosting properties. In Chinese medicine, Ginseng and Schisandra are frequently used together as a clinical pair to mutually enhance their effect, producing a synergistic effect when consumed in combination. However, the underlying mechanism of their synergistic effect remains uncertain. Therefore, this study investigates the synergistic effect of Ginseng-Schisandra in terms of macromolecular proteins. Methods We used a dual-protein research methodology combined with co-extraction techniques to obtain the co-extracted protein of ginseng and Schisandra. We then compared the physicochemical and functional properties and antioxidant activities of co-extracted protein (COP), simple mixed protein (SMP), Ginseng protein (PGP), and Schisandra protein (SCP). Results Generally, PGP and SCP are considered as functional food with antioxidant activity. COP are composite proteins with a shared internal structure that are combined by Ginseng and Schisandra proteins, while SMP are simple mixtures of PGP and SCP. Free radical scavenging experiments indicated that COP exhibited the highest scavenging ability for hydroxyl radicals (98.89%), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals (85.95%), and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS+) radicals (42.69%). In vitro, COP significantly reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), while increasing intracellular levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and lactate dehydrogenase (LDH) levels in HepG2 cells. Discussion The comparative results of the macromolecular proteins reveal that COP contributes to the synergistic effect of Ginseng-Schisandra and indicate the advantages of co-extraction in protein production, suggesting the potential application of COP in the food industry.
Collapse
Affiliation(s)
- Han Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Haidong Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Hongyan Zhou
- Changchun University of Chinese Medicine, Changchun, China
| | - Jialin Shi
- Changchun University of Chinese Medicine, Changchun, China
| | - Zhiqiang Wan
- Changchun University of Chinese Medicine, Changchun, China
| | - Guangzhe Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Mingming Yan
- Changchun University of Chinese Medicine, Changchun, China
- Jinlin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Liao J, Zhao X. Recent Research Progress on the Chemical Constituents, Pharmacology, and Pharmacokinetics of Alpinae oxyphyllae Fructus. Molecules 2024; 29:3905. [PMID: 39202984 PMCID: PMC11357166 DOI: 10.3390/molecules29163905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alpinae oxyphyllae fructus (AOF), the dried mature fruit of Alpinia oxyphylla Miquel of the Zingiberaceae family, shows many special pharmacological effects. In recent years, there has been an abundance of research results on AOF. In this paper, the new compounds isolated from AOF since 2018 are reviewed, including terpenes, flavonoids, diarylheptanoids, phenolic acid, sterols, alkanes, fats, etc. The isolation methods that were applied include the microwave-assisted method, response surface method, chiral high-performance liquid chromatography-multiple reaction monitoring-mass spectrometry (HPLC-MRM-MS) analytical method, ultra-high-performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Orbitrap-HRMS) method, ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method, hot water leaching method, ethanol leaching method, and so on. Additionally, the pharmacological effects of AOF found from 2018 to 2024 are also summarized, including neuroprotection, regulation of metabolic disorders, antioxidant activity, antiapoptosis, antiinflammatory activity, antidiabetic activity, antihyperuricemia, antiaging, antidiuresis, immune regulation, anti-tumor activity, renal protection, hepatoprotection, and anti-asthma. This paper provides a reference for further research on AOF.
Collapse
Affiliation(s)
| | - Xueying Zhao
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China;
| |
Collapse
|
5
|
Xie R, Chen F, Ma Y, Hu W, Zheng Q, Cao J, Wu Y. Network pharmacology‒based analysis of marine cyanobacteria derived bioactive compounds for application to Alzheimer's disease. Front Pharmacol 2023; 14:1249632. [PMID: 37927608 PMCID: PMC10620974 DOI: 10.3389/fphar.2023.1249632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
In recent years, the Alzheimer's disease (AD) epidemic has become one of the largest global healthcare crises. Besides, the available systemic therapies for AD are still inadequate. Due to the insufficient therapeutic options, new treatment strategies are urgently needed to achieve a satisfactory therapeutic effect. Marine bio-resources have been accepted as one of the most economically viable and sustainable sources with potential applications for drug discovery and development. In this study, a marine cyanobacteria-Synechococcus sp. XM-24 was selected as the object of research, to systematically investigate its therapeutic potential mechanisms for AD. The major active compounds derived from the Synechococcus sp. biomass were identified via pyrolysis-gas chromatography-mass spectrometry (GC-MS), and 22 compounds were identified in this strain. The most abundant chemical compounds was (E)-octadec-11-enoic acid, with the peak area of 30.6%. Follow by tridecanoic acid, 12-methyl- and hexadecanoic acid, with a peak area of 23.26% and 18.23%, respectively. GC-MS analysis also identified indolizine, isoquinoline, 3,4-dihydro- and Phthalazine, 1-methyl-, as well as alkene and alkane from the strain. After the chemical toxicity test, 10 compounds were finally collected to do the further analysis. Then, network pharmacology and molecular docking were adopted to systematically study the potential anti-AD mechanism of these compounds. Based on the analysis, the 10 Synechococcus-derived active compounds could interact with 128 related anti-AD targets. Among them, epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGFA) and mitogen-activated protein kinase 3 (MAPK3) were the major targets. Furthermore, the compounds N-capric acid isopropyl ester, (E)-octadec-11-enoic acid, and 2H-Pyran-2,4(3H)-dione, dihydro-6-methyl- obtained higher degrees in the compounds-intersection targets network analysis, indicating these compounds may play more important role in the process of anti-AD. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these active compounds exert the anti-AD effects mainly through PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction and ras signaling pathway. Our study identified Synechococcus-derived bioactive compounds have the potential for application to AD by targeting multiple targets and related pathways, which will provide a foundation for future research on applications of marine cyanobacteria in the functional drug industry.
Collapse
Affiliation(s)
- Rui Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Feng Chen
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jinguo Cao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
6
|
Dai C, Liu M, Zhang Q, Das Gupta S, Tang S, Shen J. Nootkatone Supplementation Attenuates Carbon Tetrachloride Exposure-Induced Nephrotoxicity in Mice. Antioxidants (Basel) 2023; 12:370. [PMID: 36829928 PMCID: PMC9951873 DOI: 10.3390/antiox12020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Nootkatone (NKT), a major ingredient of Alpinia oxyphylla, exhibited potential nephroprotective effects; however, the precise molecular mechanisms remain poorly understood. This study aimed to study the nephroprotective effects of NKT and the underlying mechanisms in a mouse model. Our results showed that NKT pretreatment at the doses of 5, 10, and 20 mg/kg per day for 7 days significantly attenuates carbon tetrachloride (CCl4)-induced increases of serum BUN and CRE and kidney pathology injury. NKT pretreatment also markedly inhibited oxidative stress, inflammatory response, and the activation of caspases-9 and -3 in kidneys of mice exposed to CCl4. Meanwhile, NKT pretreatment downregulated the expression of NOX4, IL-1β, IL-6, and TNF-α proteins and NO levels in the kidney tissues. Moreover, NKT pretreatment upregulated the expression of Nrf2 and HO-1 mRNAs, and downregulated the expression of NF-κB, IL-1β, IL-6, TNF-α, and iNOS mRNAs in the kidneys of mice, compared to those in the CCl4 alone treatment group. In conclusion, our results reveal that NKT supplementation could protect against CCl4 exposure-induced oxidative stress and inflammatory response in the kidneys by inhibiting NOX4 and NF-κB pathways and activating the Nrf2/HO-1 pathway. Our current study highlights the therapeutic application of NKT for kidney diseases.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qinzhi Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Subhajit Das Gupta
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Nootkatone Supplementation Ameliorates Carbon Tetrachloride-Induced Acute Liver Injury via the Inhibition of Oxidative Stress, NF-κB Pathways, and the Activation of Nrf2/HO-1 Pathway. Antioxidants (Basel) 2023; 12:antiox12010194. [PMID: 36671056 PMCID: PMC9855146 DOI: 10.3390/antiox12010194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Acute liver injury is a type of liver diseases, and it has raised concerns worldwide due to the lack of effective therapies. The aim of this study is to investigate the protective effects of nootkatone (NOOT) on carbon tetrachloride (CCl4)-caused acute liver injury in mice. Mice were randomly divided into control, CCl4 model, NOOT, and NOOT (5, 10, and 20 mg/kg/day) plus CCl4 groups, respectively. Mice in the CCl4 plus NOOT groups were orally administrated with NOOT at 5, 10, and 20 mg/kg/days for seven days prior to 0.3% CCl4 injection at 10 mL/kg body weight, respectively. Our results showed that NOOT supplementation significantly ameliorated CCl4-induced increases of serum AST and ALT levels, hepatocyte necrosis, inflammatory response, oxidative stress, and caspases-9 and -3 activities in the livers of mice. Moreover, NOOT supplementation significantly upregulated the expression of Nrf2 and HO-1 mRNAs but downregulated the expression of NF-κB mRNAs and the levels of IL-1β, IL-6, and TNF-α proteins in the liver tissues, compared to those in the CCl4 model group. In conclusion, for the first time, our results reveal that NOOT could offer protective effects against CCl4-caused oxidative stress and inflammatory response via the opposite regulation of Nrf2/HO-1 pathway and NF-κB pathway.
Collapse
|
8
|
Zhou S, Liu L, Zhang Y, Zhang Z, Li H, Fan F, He J, Kang J, Zuo L. Integrated untargeted and targeted metabolomics to reveal therapeutic effect and mechanism of Alpiniae oxyphyllae fructus on Alzheimer's disease in APP/PS1 mice. Front Pharmacol 2023; 13:1104954. [PMID: 36712678 PMCID: PMC9873993 DOI: 10.3389/fphar.2022.1104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: Alpiniae oxyphyllae Fructus (AOF) has been abundantly utilized for the treatment of diarrhea, dyspepsia, kidney asthenia, and abdominal pain in China. AOF is effective for treating AD in clinical trials, but its exact mode of action is yet unknown. Methods: In this study, metabolomics was combined to ascertain the alterations in plasma metabolism in APP/PS1 transgenic mice, the therapy of AOF on model mice, and the dynamic variations in 15 bile acids (BAs) concentration. Results: 31 differential biomarkers were finally identified in APP/PS1 group vs. the WT group. The levels of 16 metabolites like sphinganine (Sa), lyso PE (20:2), lysoPC (17:0), glycocholic acid (GCA), deoxycholicacid (DCA) were increased in APP/PS1 group, and those of 15 metabolites like phytosphingosine, cer (d18:0/14:0), and fumaric acid were reduced in APP/PS1 group. After AOF treatment, 29 of the 31 differential metabolites showed a tendency to be back-regulated, and 15 metabolites were significantly back-regulated, including sphinganine (Sa), lyso PE (20:2), glycocholic acid (GCA), deoxycholic acid (DCA). The relationship between BAs level and AD had been received increasing attention in recent years, and we also found notable differences between DCA and GCA in different groups. Therefore, a BAs-targeted metabonomic way was established to determine the level of 15 bile acids in different groups. The consequence demonstrated that primary BAs (CA, CDCA) declined in APP/PS1 model mice. After 3 months of AOF administration, CA and CDCA levels showed an upward trend. Conjugated primary bile acids (TCA, GCA, TCDCA, GCDCA), and secondary bile acids (DCA, LCA, GDCA, TDCA, TLCA GLCA) ascended in APP/PS1 group. After 3 months of AOF treatment, the levels of most BAs decreased to varying degrees. Notably, the metabolic performance of DCA and GCA in different groups was consistent with the predictions of untargeted metabolomics, validating the correctness of untargeted metabolomics. Discussion: According to metabolic pathways of regulated metabolites, it was prompted that AOF ameliorated the symptom of AD mice probably by regulating bile acids metabolism. This study offers a solid foundation for further research into the AOF mechanism for the therapy of AD.
Collapse
Affiliation(s)
- Shengnan Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, China
| | - Yuanyuan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, China
| | - Zhibo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, China
| | - Hanbing Li
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Feng Fan
- Department of Neurointerventional radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, Henan, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Tan W, Zheng Q, Feng K, Feng X, Zhong W, Liao C, Li S, Liu Y, Hu W. Neuroprotection of Gastrodia elata polyphenols against H 2O 2-induced PC12 cell cytotoxicity by reducing oxidative stress. Front Pharmacol 2022; 13:1050775. [PMID: 36438797 PMCID: PMC9684467 DOI: 10.3389/fphar.2022.1050775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 08/04/2023] Open
Abstract
It has been suggested that oxidative stress (OS) has a role in the development of aging and neurodegenerative disorders. Biological molecules are easily damaged by reactive oxygen species, which can ultimately result in necrotic or apoptotic cell death. Foods containing phytochemicals, such as phenolic compounds, may have potential preventive effects against several diseases, including alzheimer's disease (AD), according to epidemiological and in vitro research. Gastrodia elata is a well-known homology of medicine and food plant that has been used for centuries in China and other East Asian countries to treat central nervous system disorders. In this study, we focused on the potential of the extract, Gastrodia elata polyphenols (GPP), for the prevention and treatment of AD. H2O2 induced PC12 cell damage was used to simulate the oxidative stress of AD. The effects of GPP on the injury model were evaluated by cell survival rate, lactate dehydrogenase (LDH), lipid peroxidation (MDA), production of intracellular antioxidant enzymes, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), cellular inflammation level and apoptosis level. The results showed that GPP pretreatment had a protective effect by increasing cell viability, reducing lactate dehydrogenase infiltration, decreasing MDA and increasing intracellular antioxidant enzymes, diminishing reactive oxygen species production and decreasing mitochondrial membrane potential, reducing cell inflammation and decreasing apoptosis. Accordingly, it is suggested that GPP possessed promising neuroprotective benefits which enabled the prevention or therapeutic implementation of AD along with serving as a reference towards the exploitation of functional foods or drugs derived from Gastrodia elata.
Collapse
Affiliation(s)
- Weijian Tan
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Qinhua Zheng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Kexin Feng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Xiaolin Feng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenting Zhong
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Caiyu Liao
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Shangjian Li
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Yuntong Liu
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenzhong Hu
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| |
Collapse
|
10
|
Restoration of CD4 + T Cells during NAFLD without Modulation of the Hepatic Immunological Pattern Is Not Sufficient to Prevent HCC. Cancers (Basel) 2022; 14:cancers14225502. [PMID: 36428596 PMCID: PMC9688124 DOI: 10.3390/cancers14225502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Predominant inflammatory immunological patterns as well as the depletion of CD4+ T cells during nonalcoholic fatty liver disease (NAFLD) are reported to be associated with the progression of hepatocellular carcinoma (HCC). Here, we report that an LRP-1 agonistic peptide, SP16, when administered during advanced NAFLD progression, restored the depleted CD4+ T cell population but did not significantly affect the inflammatory immunological pattern. This data suggests that restoration of CD4+ T cells without modulation of the hepatic immunological pattern is not sufficient to prevent HCC. However, SP16 administered early during NAFLD progression modulated the inflammatory profile. Future studies will determine if regulation of the inflammatory immune response by SP16 early in NAFLD progression will prevent HCC.
Collapse
|