1
|
Gao L, Zhong L, Feng T, Yue J, Lu Q, Li L, Wu A, Lin G, He Q, Liu K, Cao G, Meng Z, Nie L, Zang H. An AI-driven strategy for active compounds discovery and non-destructive quality control in traditional Chinese medicine: A case of Xuefu Zhuyu Oral Liquid. Talanta 2025; 287:127627. [PMID: 39889683 DOI: 10.1016/j.talanta.2025.127627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
The modernization and globalization of traditional Chinese medicine (TCM) face challenges such as unclear active compounds and inadequate quality control. Taking Xuefu Zhuyu Oral Liquid (XZOL) as an example, this study proposed an artificial intelligence (AI) -driven strategy for active compounds discovery and non-destructive quality control. Firstly, the multi-wavelength fusion high-performance liquid chromatography (HPLC) fingerprints were constructed to comprehensively characterize the chemical composition of XZOL. Secondly, the pro-angiogenesis effects of XZOL were evaluated in a PTK787-induced intersegmental vessels (ISVs) injury zebrafish model. Then, spectrum-effect relationship models, incorporating gray relational analysis (GRA), partial least squares regression (PLSR), backpropagation artificial neural networks (BP-ANN), and convolutional neural networks (CNN), discovered seven pro-angiogenesis active compounds (Hydroxysafflor Yellow A, Paeoniflorin, Ferulic Acid, Narirutin, Naringin, Hesperidin, and Neohesperidin). Furthermore, the efficacy of these compounds was further validated through network pharmacology, molecular docking, and zebrafish. Finally, a rapid and non-destructive quality control system based on near infrared spectroscopy (NIRS) was established. This system effectively distinguished expired and normal samples by combining Hotelling T2 and Distance to Model X (DModX) statistics of multivariate statistical process control (MSPC), and accurately predicted the content of above active compounds by CNN model integration with bidirectional long short-term memory (Bi-LSTM) and multi-head self-attention (MHSA) networks. This study underscores the potential of AI-driven strategy to enhance TCM standardization and global recognition by providing an active compounds-based holistic quality control strategy of TCM.
Collapse
Affiliation(s)
- Lele Gao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Liang Zhong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Tingting Feng
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jianan Yue
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qingqing Lu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Guimei Lin
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, 250103, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, 250103, China
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Fu X, Zhou J, Zhao J, Yang R, Zhou A, Fang Z, Wu H. Rapid Identification of Chemical Compounds in Danzhi Jiangtang Capsule Using Ultra-Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry Combined With Multiple Data Processing Techniques. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5140. [PMID: 40285534 DOI: 10.1002/jms.5140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Danzhi Jiangtang capsule (DJC) is a traditional Chinese medicine prescription that has been clinically used to treat Type 2 diabetes mellitus and its complications. However, research on the chemical compounds present in DJC remains limited. In this study, an analytical strategy based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was developed for the rapid and systematic characterization of chemical compounds in DJC. Firstly, a DJC self-built database was established, and UPLC-Q-TOF/MS was applied for comprehensive profiling of DJC's chemical compounds. Then, R language combined with MZmine was used for data preprocessing to construct the ion information list and extract effective data. Finally, the compounds were identified by multiple data processing techniques (multiple-point screening mass defect filtering [MDF], extracted ion chromatogram [EIC], neutral loss filter [NLF], diagnostic fragment ion filtering [DFIF], and direct identification method [including retention time, fragment behavior and reference substances]). Eventually, 137 compounds were characterized from DJC, including 19 monoterpenoids, 26 triterpenoids, 8 flavonoids, 12 iridoids, 7 phenylethanoid glycosides, 8 acetophenones, 23 organic acids, 2 violet ketones, 13 cyclic peptides, 8 alkaloids, 2 fatty acids, and 9 other compounds. Among these, 16 compounds were verified using reference substances. The study indicated that the analytical strategy established in this study effectively supports the in-depth study of DJC's chemical constituents and provides essential data for subsequent in vivo studies.
Collapse
Affiliation(s)
- Xiaojie Fu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Junting Zhou
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jindong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Rui Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province key Laboratory of Chinese Medicinal Formula, Hefei, China
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Yang Y, Jiang B, Shi L, Wang L, Yang Y, Li Y, Zhang Y, Zhu Z, Zhang X, Liu X. The potential of natural herbal plants in the treatment and prevention of non-small cell lung cancer: An encounter between ferroptosis and mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119555. [PMID: 40015539 DOI: 10.1016/j.jep.2025.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine constitutes a substantial cultural and scientific resource for the Chinese nation, attracting considerable scholarly interest due to its intrinsic characteristics of "multi-component, multi-target, and multi-pathway" interactions. Simultaneously, it aligns accurately with the intricate and continuously evolving progression of non-small cell lung cancer (NSCLC). Furthermore, contemporary pharmacological studies indicate that natural herbaceous plants and their bioactive compounds exhibit a diverse array of biological activities, including antioxidant, anti-inflammatory, and anti-tumor effects, among others. Additionally, these substances have been demonstrated to possess a degree of safety, particularly in terms of exhibiting comparatively lower levels of toxicity to the liver and kidneys when contrasted with conventional Western medicine. Thus, the development of herbal plants, which includes both single herbs and composite formulations, as well as their bioactive constituents, through the targeted regulation of ferroptosis and mitophagy, presents substantial potential and instills considerable hope for individuals diagnosed with NSCLC. AIM OF THE REVIEW This review aims to conduct a critical analysis of the ethnopharmacological applications of natural herbaceous plants in relation to ferroptosis and mitophagy in NSCLC. The objective is to evaluate the potential advantages of prioritizing specific phytochemical constituents found in these plants, which may serve as novel therapeutic candidates informed by ethnobotanical knowledge. Additionally, this study seeks to enhance the current pharmacological applications of natural herbaceous plants. METHODS An investigation into natural herbal remedies for NSCLC was conducted, with a particular emphasis on the ferroptosis and mitophagy pathways. This study utilized traditional medical texts and ethnomedicinal literature as primary sources. Furthermore, relevant information related to ethnobotany, phytochemistry, and pharmacology is obtained from online databases, including PubMed and the China National Knowledge Infrastructure (CNKI), among others. "Traditional Chinese medicine compound preparations", "single herb extracts", "active compounds", "NSCLC", "ferroptosis", and "mitophagy" were used as keywords when searching the databases. Consequently, pertinent articles published in recent years were collected and analyzed. RESULTS Given the complex etiology of NSCLC, treatment strategies that concentrate exclusively on ferroptosis or mitophagy often demonstrate limitations. In this regard, the utilization of herbal plants offers unique benefits in the management of NSCLC. The rationale can be summarized within the following two dimensions: Firstly, due to the molecular mechanisms of ferroptosis and mitophagy involving multiple signaling pathways (including PINK1/Parkin, HMGB1, system Xc-/GPX4/GSH, FSP1/CoQ10/NAD (P) H, and so on), sometimes drugs with a single target are difficult to involve multiple pathways. Fortunately, there is an expanding body of evidence suggesting that various herbaceous plants and their bioactive compounds can affect multiple biological targets. Moreover, these compounds seem to interact with several targets associated with ferroptosis and mitophagy in NSCLC (such as NIX, BNIP3, FUNDC1, GPX4, FSP1, P53, Nrf2, LncRNA, and so on). Secondly, Herbaceous plants and their bioactive compounds have been shown to possess a favorable safety profile, particularly with respect to reduced hepatotoxicity and nephrotoxicity in comparison to conventional Western medicine. For example, Numerous compound formulations, such as Fangji Huangqi decoction, Mufangji decoction, Qiyu Sanlong decoction, and Fuzheng Kangai decoction, have been employed in China for millennia, and their clinical efficacy appears to be quite promising. Notably, In recent years, numerous researchers have sought to isolate active constituents from clinically effective compound formulations through the application of chemical methodologies. This endeavor has been driven by the necessity to tackle challenges related to complex ingredient compositions and sophisticated processing. These active compounds have been employed in cellular and animal studies to elucidate the molecular mechanisms underlying these formulations. CONCLUSIONS The Asian region has a long-standing historical tradition of employing natural herbaceous plants for traditional medicinal purposes. Phytochemical and pharmacological studies have shown that various compound preparations derived from traditional Chinese medicine, along with individual herb extracts and their active constituents, display a range of bioactive effects. These effects encompass anti-tumor, anti-inflammatory, antibacterial, and antioxidant properties, among others. Numerous traditional compound formulations originating from China have emerged as promising candidates for the development of pharmacological agents targeting NSCLC. It is noteworthy that a variety of compound formulations aimed at the ferroptosis and mitophagy pathways, which demonstrate unique therapeutic effects on NSCLC, are presently under extensive investigation by an increasing number of researchers. Therefore, it is imperative to consider in vitro mechanistic studies, in vivo pharmacological evaluations, and assessments of clinical efficacy. Furthermore, it is essential to conduct a comprehensive assessment of plant resources, implement quality control measures, and engage in toxicological research to ensure that the data is appropriate for further examination.
Collapse
Affiliation(s)
- Yujie Yang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lijuan Shi
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lili Wang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yaru Yang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yongyu Li
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yanmei Zhang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Zhongbo Zhu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Xuhui Zhang
- Department of Pulmonary Diseases, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, 730030, China.
| | - Xiping Liu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
4
|
Li L, Chen C, Yang R, Wei Z, Zheng T, Li Z, Wu H. Metabolomic analysis of urethane-induced lung carcinogenesis in rats and the ameliorative effect of Qi-Yu-San-Long decoction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3058-3069. [PMID: 40171836 DOI: 10.1039/d4ay02165g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Lung carcinogenesis (LC) is a kind of disease, which threatens human health seriously. Metabolomic research on bio-fluids and tissues is crucial for elucidating the pathogenesis of LC and understanding the therapeutic mechanisms of medicines. In this study, we established a rat model for LC by induction with urethane. The anti-tumor effect of Qi-Yu-San-Long decoction (QYSLD) on LC was assessed through morphology changes, histopathological examination, and inflammation levels. Utilizing the metabolomics technique based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), we investigated the metabolic changes in the plasma and lungs of LC rats and explored the ameliorative effects of QYSLD on the molecular levels. Functional biomarkers associated with QYSLD in LC rats were identified and relatively quantified. The results manifested that, in contrast to the control group, the number of tumor nodules and inflammation levels in the LC model group increased significantly, indicating that the LC rat model was successfully built. After QYSLD treatment, the morphology and lesion degree of LC rats were greatly improved. A total of 23 differential metabolites between the control group and the urethane-induced LC group were screened through plasma and lung tissue metabolomics studies, of which 20 were considerably modulated after QYSLD treatment. Metabolic pathway analysis revealed that the pathogenesis of LC and the therapeutic effects of QYSLD primarily involved glycerophospholipid metabolism, ether lipid metabolism, sphingolipid metabolism, and arachidonic acid metabolism. Our findings provide a potential intracellular metabolite profile for urethane-induced LC and demonstrate that QYSLD exerts anti-tumor effects on LC by modulating multiple metabolic pathways.
Collapse
Affiliation(s)
- Lanying Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Chang Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Rui Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ziqi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ting Zheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zegeng Li
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China
| | - Huan Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, 20742, USA.
| |
Collapse
|
5
|
Yang R, Fu X, Li L, Wei Z, Zhou A, Wu H. Identification and Characterization of Chemical Compounds in Compound Shougong Powder by UHPLC-Q-TOF/MS E Combined With Multiple Data Processing Techniques. J Sep Sci 2025; 48:e70069. [PMID: 39740116 DOI: 10.1002/jssc.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Compound Shougong Powder (CSP) is a traditional Chinese medicine (TCM) preparation recognized for its efficacy in reducing swelling and relieving pain. It is primarily used clinically for the treatment of malignant tumors. However, research on the chemical compounds present in CSP remains limited. In this study, we employed ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MSE) combined with multiple data processing techniques to comprehensively characterize the chemical compounds in CSP. This included a multiple-point screening mass defect filtering (MDF), an enhanced method based on conventional MDF and boundary theory that creates a polygonal filtering zone by connecting numerous endpoints (n ≥ 5) to filter target components. Additional techniques utilized were extracted ion chromatogram (EIC), neutral loss filtering (NLF), diagnostic fragment ion filtering (DFIF), and direct identification methods considering retention time, fragmentation behavior, and reference standards. First, UHPLC-Q-TOF/MSE was applied for comprehensive profiling of CSP's chemical compounds. Then, R language combined with MZmine was used for data preprocessing, enabling the construction of an ion information list to extract valid data. Eventually, through these multiple data processing techniques, a total of 116 chemical compounds in CSP were identified, including 34 flavonoids, 38 saponins, seven stilbenes, six anthraquinones, 12 organic acids, 13 terpenoids, and six others. In summary, this study elucidates the chemical composition of CSP, contributing to the discovery of potential active ingredients for CSP. Additionally, the established strategy provided a powerful guide for the chemical characterization of TCM.
Collapse
Affiliation(s)
- Rui Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaojie Fu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lanying Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ziqi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Huan Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Chen C, Zheng T, Chen Y, Li Z, Wu H. A systematic evaluation of quenching, extraction and analysis procedures for metabolomics study of the mechanism of QYSLD intervention in A549 cells. Anal Bioanal Chem 2024; 416:6621-6638. [PMID: 39467912 DOI: 10.1007/s00216-024-05563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
The preparation of cellular metabolomics samples and how to achieve comprehensive coverage of different polar metabolites in cell samples in the analysis pose a challenge for cellular metabolomics. In this study, we optimized a metabolomics protocol based on ultra-high-performance liquid chromatography high-resolution mass spectrometry (UPLC/HRMS) for the extraction and detection of metabolites in A549 cells and exploration of the intervention effect of Qi-Yu-San-Long decoction (QYSLD) on A549 cells. The results indicate that the lowest level of ATP leakage was observed when A549 cells were quenched under liquid nitrogen. MeOH/chloroform/H2O (1:2:1) extraction yielded more chromatographic peaks and excellent reproducibility, and the relative extraction efficiency of most target metabolites was also high. And we optimized the chromatographic separation conditions in both HILIC and RPLC modes, enabling comprehensive detection and analysis of metabolites with varying polarities. Then, we applied the optimized method to UPLC-Q-TOF/MS-based metabolomics of A549 cells to study the mechanism of QYSLD intervention in non-small cell lung cancer (NSCLC). The CCK-8, EdU staining, and cell cycle assay showed that QYSLD inhibited the proliferation of A549 cells by interfering with the cell cycle and blocking them in the G1 phase. A total of 36 differential metabolites associated with the antitumor effects of QYSLD on NSCLC were identified, mainly involving nicotinate and nicotinamide metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. And western blotting confirmed that the change in 1-methylnicotinamide levels after QYSLD intervention was associated with the inhibition of nicotinamide N-methyltransferase expression in A549 cells.
Collapse
Affiliation(s)
- Chang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road No.103, Hefei, 230038, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China
| | - Ting Zheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road No.103, Hefei, 230038, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zegeng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road No.103, Hefei, 230038, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road No.103, Hefei, 230038, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China.
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
7
|
Sheng L, Sun J, Huang L, Yu M, Meng X, Shan Y, Dai H, Wang F, Shi J, Sheng M. Astragalus membranaceus and its monomers treat peritoneal fibrosis and related muscle atrophy through the AR/TGF-β1 pathway. Front Pharmacol 2024; 15:1418485. [PMID: 39239655 PMCID: PMC11374727 DOI: 10.3389/fphar.2024.1418485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024] Open
Abstract
Background: To anticipate the potential molecular mechanism of Astragalus membranaceus (AM) and its monomer, Calycosin, against peritoneal fibrosis (PF) and related muscle atrophy using mRNA-seq, network pharmacology, and serum pharmacochemistry. Methods: Animal tissues were examined to evaluate a CKD-PF mice model construction. mRNA sequencing was performed to find differential targets. The core target genes of AM against PF were screened through network pharmacology analysis, and CKD-PF mice models were given high- and low-dose AM to verify common genes. Serum pharmacochemistry was conducted to clarify which components of AM can enter the blood circulation, and the selected monomer was further validated through cell experiments for the effect on PF and mesothelial mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs). Results: The CKD-PF mice models were successfully constructed. A total of 31,184 genes were detected in the blank and CKD-PF groups, and 228 transcription factors had significant differences between the groups. Combined with network pharmacology analysis, a total of 228 AM-PF-related targets were identified. Androgen receptor (AR) was the remarkable transcription factor involved in regulating transforming growth factor-β1 (TGF-β1). AM may be involved in regulating the AR/TGF-β1 signaling pathway and may alleviate peritoneal dialysis-related fibrosis and muscle atrophy in CKD-PF mice. In 3% peritoneal dialysis solution-stimulated HMrSV5 cells, AR expression levels were dramatically reduced, whereas TGF-β1/p-smads expression levels were considerably increased. Conclusion: AM could ameliorate PF and related muscle atrophy via the co-target AR and modulated AR/TGF-β1 pathway. Calycosin, a monomer of AM, could partially reverse PMC MMT via the AR/TGF-β1/smads pathway. This study explored the traditional Chinese medicine theory of "same treatment for different diseases," and supplied the pharmacological evidence of "AM can treat flaccidity syndrome."
Collapse
Affiliation(s)
- Li Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
- Medical Experimental Research Center, First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Huang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohui Meng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Shi
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Chen J, Li Y, Gu X, Wu T, Du H, Bai C, Yang J, Hu K. Identifying Anti-NSCLC Bioactive Compounds in Scutellaria via 2D NMR-Based Metabolomic Analysis of Pharmacologically Classified Crude Extracts. Chem Biodivers 2024; 21:e202400258. [PMID: 38581076 DOI: 10.1002/cbdv.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/03/2024] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
We presented a strategy utilizing 2D NMR-based metabolomic analysis of crude extracts, categorized by different pharmacological activities, to rapidly identify the primary bioactive components of TCM. It was applied to identify the potential bioactive components from Scutellaria crude extracts that exhibit anti-non-small cell lung cancer (anti-NSCLC) activity. Four Scutellaria species were chosen as the study subjects because of their close phylogenetic relationship, but their crude extracts exhibit significantly different anti-NSCLC activity. Cell proliferation assay was used to assess the anti-NSCLC activity of four species of Scutellaria. 1H-13C HSQC spectra were acquired for the chemical profiling of these crude extracts. Based on the pharmacological classification (PCA, OPLS-DA and univariate hypothesis test) were performed to identify the bioactive constituents in Scutellaria associated with the anti-NSCLC activity. As a result, three compounds, baicalein, wogonin and scutellarin were identified as bioactive compounds. The anti-NSCLC activity of the three potential active compounds were further confirmed via cell proliferation assay. The mechanism of the anti-NSCLC activity by these active constituents was further explored via flow cytometry and western blot analyses. This study demonstrated 2D NMR-based metabolomic analysis of pharmacologically classified crude extracts to be an efficient approach to the identification of active components of herbal medicine.
Collapse
Affiliation(s)
- Jialuo Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yanping Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China Tel
| | - Xiu Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China Tel
| | - Tianren Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Huan Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Caihong Bai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China Tel
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China Tel
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China Tel
| |
Collapse
|
9
|
Zou J, Li M, Liu Z, Luo W, Han S, Xiao F, Tao W, Wu Q, Xie T, Kong N. Unleashing the potential: integrating nano-delivery systems with traditional Chinese medicine. NANOSCALE 2024; 16:8791-8806. [PMID: 38606497 DOI: 10.1039/d3nr06102g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This review explores the potential of integrating nano-delivery systems with traditional Chinese herbal medicine, acupuncture, and Chinese medical theory. It highlights the intersections and potential of nano-delivery systems in enhancing the effectiveness of traditional herbal medicine and acupuncture treatments. In addition, it discusses how the integration of nano-delivery systems with Chinese medical theory can modernize herbal medicine and make it more readily accessible on a global scale. Finally, it analyzes the challenges and future directions in this field.
Collapse
Affiliation(s)
- Jianhua Zou
- State Key Laboratory of Quality Research in Chinese Medicines, and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Meng Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Ziwei Liu
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, USA
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
10
|
Rong X, Wu H, Huang R, Chen C, Fu X, Yang M, Zhou A, Yang Q, Li Z. Rapid identification of chemical constituents and dynamic metabolic profile of Shenqi-Tiaoshen formula in rat plasma based on UPLC-Q-TOF/MS E. J Pharm Biomed Anal 2024; 241:115981. [PMID: 38237543 DOI: 10.1016/j.jpba.2024.115981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024]
Abstract
Shenqi-Tiaoshen formula (SQTSF) is a traditional Chinese medicine (TCM) prescription that has been employed in the treatment of chronic obstructive pulmonary disease (COPD). Clinical practice has demonstrated that SQTSF is an effective prescription for stable COPD. However, owing to the complexity of TCM prescription, there is a lack of in-depth understanding of the chemical components of SQTSF and its in vivo metabolism studies. In this study, a comprehensive analytical strategy based on ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was established to identify the chemical components, the absorbed components, and the metabolites of SQTSF given by gavage in rats, and analyze their dynamic changes. As a result, 86 chemical components of SQTSF were characterized, which were mainly categorized into flavonoids, saponins, organic acids, terpenoids, etc. Among them, 13 compounds were confirmed unambiguously by reference standards. Furthermore, 20 prototype components and 46 metabolites were detected in rat plasma at different time points. It was found that one prototype component and thirteen metabolites could be detected during the entire 24 h, indicating that these compounds were slowly eliminated and thus accumulated in vivo over a prolonged duration. Interestingly, the phenomenon that three prototype components and fourteen metabolites reappeared after a period of disappearance from the plasma was found. It was also observed that different prototype components may generate the same metabolite. The metabolic processes of SQTSF in rats mainly included oxidation, reduction, hydration, demethylation, deglycosylation, methylation, acetylation, glucuronidation, glutathionylation, and associated combination reactions. Overall, the present study identified the chemical components of SQTSF and their dynamic metabolic profile in rat plasma, which provided a systematic and applicable strategy for screening and characterization of the prototype components and metabolites of TCM compound preparations.
Collapse
Affiliation(s)
- Xuewen Rong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei 230031, China; Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China.
| | - Ruotong Huang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Chang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Xiaojie Fu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Mo Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - An Zhou
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Qinjun Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei 230031, China
| | - Zegeng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei 230031, China.
| |
Collapse
|
11
|
Tayeb BA, Kusuma IY, Osman AAM, Minorics R. Herbal compounds as promising therapeutic agents in precision medicine strategies for cancer: A systematic review. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:137-162. [PMID: 38462407 DOI: 10.1016/j.joim.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The field of personalized medicine has gained increasing attention in cancer care, with the aim of tailoring treatment strategies to individual patients for improved outcomes. Herbal medicine, with its long-standing historical use and extensive bioactive compounds, offers a rich source of potential treatments for various diseases, including cancer. OBJECTIVE To provide an overview of the current knowledge and evidence associated with incorporating herbal compounds into precision medicine strategies for cancer diseases. Additionally, to explore the general characteristics of the studies included in the analysis, focusing on their key features and trends. SEARCH STRATEGY A comprehensive literature search was conducted from multiple online databases, including PubMed, Scopus, Web of Science, and CINAHL-EBSCO. The search strategy was designed to identify studies related to personalized cancer medicine and herbal interventions. INCLUSION CRITERIA Publications pertaining to cancer research conducted through in vitro, in vivo, and clinical studies, employing natural products were included in this review. DATA EXTRACTION AND ANALYSIS Two review authors independently applied inclusion and inclusion criteria, data extraction, and assessments of methodological quality. The quality assessment and biases of the studies were evaluated based on modified Jadad scales. A detailed quantitative summary of the included studies is presented, providing a comprehensive description of their key features and findings. RESULTS A total of 121 studies were included in this review for analysis. Some of them were considered as comprehensive experimental investigations both in vitro and in vivo. The majority (n = 85) of the studies included in this review were conducted in vitro, with 44 of them specifically investigating the effects of herbal medicine on animal models. Additionally, 7 articles with a combined sample size of 31,271 patients, examined the impact of herbal medicine in clinical settings. CONCLUSION Personalized medication can optimize the use of herbal medicine in cancer treatment by considering individual patient factors such as genetics, medical history, and other treatments. Additionally, active phytochemicals found in herbs have shown potential for inhibiting cancer cell growth and inducing apoptosis, making them a promising area of research in preclinical and clinical investigations. Please cite this article as: Tayeb BA, Kusuma IY, Osman AAM, Minorics R. Herbal compounds as promising therapeutic agents in precision medicine strategies for cancer: A systematic review. J Integr Med. 2024; 22(2): 137-162.
Collapse
Affiliation(s)
- Bizhar Ahmed Tayeb
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary.
| | - Ikhwan Yuda Kusuma
- Institution of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Hungary; Pharmacy Study Program, Faculty of Health, Universitas Harapan Bangsa, Purwokerto 53182, Indonesia
| | - Alaa A M Osman
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, University of Gezira, 20 Wad Madani, Sudan
| | - Renáta Minorics
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
12
|
Zhang Y, Wang Y, Yan K, Li H, Zhang X, Essola JM, Ding C, Chang K, Qing G, Zhang F, Tan Y, Peng T, Wang X, Jiang M, Liang X, Hua Q. Traditional Chinese Medicine Formulae QY305 Reducing Cutaneous Adverse Reaction and Diarrhea by its Nanostructure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306140. [PMID: 38044276 PMCID: PMC10837375 DOI: 10.1002/advs.202306140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Traditional Chinese medicine (TCM) is widely used in clinical practice, including skin and gastrointestinal diseases. Here, a potential TCM QY305 (T-QY305) is reported that can modulate the recruitment of neutrophil in skin and colon tissue thus reducing cutaneous adverse reaction and diarrhea induced by epidermal growth factor receptor inhibitors (EGFRIs). On another hand, the T-QY305 formula, through regulating neutrophil recruitment features would highlight the presence of N-QY305, a subunit nanostructure contained in T-QY305, and confirm its role as potentially being the biomaterial conferring to T-QY305 its pharmacodynamic features. Here, the clinical records of two patients are analyzed expressing cutaneous adverse reaction and demonstrate positive effect of T-QY305 on the simultaneous inhibition of both cutaneous adverse reaction and diarrhea in animal models. The satisfying results obtained from T-QY305, lead to further process to the isolation of N-QY305 from T-QY305, in order to demonstrate that the potency of T-QY305 originates from the nanostructure N-QY305. Compared to T-QY305, N-QY305 exhibits higher potency upon reducing adverse reactions. The data represent a promising candidate for reducing cutaneous adverse reaction and diarrhea, meanwhile proposing a new strategy to highlight the presence of nanostructures being the "King" of Chinese medicine formula as the pharmacodynamic basis.
Collapse
Affiliation(s)
- Ya‐Li Zhang
- School of Life SciencesSchool of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijing102488China
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyChinese Academy of Sciences and National Center for Nanoscience and Technology of ChinaBeijing100190China
| | - Ya‐Lei Wang
- School of Life SciencesSchool of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijing102488China
| | - Ke Yan
- School of Life SciencesSchool of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijing102488China
| | - Haiyan Li
- School of Life SciencesSchool of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijing102488China
| | - Xinyu Zhang
- School of Life SciencesSchool of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijing102488China
| | - Julien Milon Essola
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyChinese Academy of Sciences and National Center for Nanoscience and Technology of ChinaBeijing100190China
| | - Chengcheng Ding
- School of Life SciencesSchool of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijing102488China
| | - Kexin Chang
- School of Life SciencesSchool of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijing102488China
| | - Guangchao Qing
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyChinese Academy of Sciences and National Center for Nanoscience and Technology of ChinaBeijing100190China
| | - Fuxue Zhang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyChinese Academy of Sciences and National Center for Nanoscience and Technology of ChinaBeijing100190China
| | - Yan Tan
- School of Life SciencesSchool of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijing102488China
| | - Tiantian Peng
- School of Life SciencesSchool of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijing102488China
| | - Xu Wang
- School of Life SciencesSchool of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijing102488China
| | - Miao Jiang
- School of Life SciencesSchool of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijing102488China
| | - Xing‐Jie Liang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyChinese Academy of Sciences and National Center for Nanoscience and Technology of ChinaBeijing100190China
| | - Qian Hua
- School of Life SciencesSchool of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijing102488China
| |
Collapse
|
13
|
Tian M, Nie L, Yin Y, Zhou H, Meng Z, Cao G, Zang H. Study on quality analysis of different species of Coptidis rhizome based on fingerprint-effect relationship. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:77-86. [PMID: 37621176 DOI: 10.1002/pca.3275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION The quality evaluation of Coptidis rhizome (CR) is attributed to the origin and processing method, and this strategy of ignoring the bioactive components usually leads to biased quality analysis, which is difficult to indicate the clinical efficacy. OBJECTIVES In order to evaluate the quality level of different species of CR, we collected 20 batches of CR and investigated the fingerprint-effect relationship. METHODS High-performance liquid chromatography (HPLC) fingerprints of CR were established, and the fingerprint-effect relationship was explored using cluster analysis, principal component analysis, Pearson correlation analysis, grey relation analysis, and partial least squares regression. RESULTS We have identified a total of 10 common peaks (1-10) with similarity scores above 0.96. The study on the relationship between spectra and potency further showed that the contents of peaks 8, 9, and 10 are potential key components. And based on a previous study, a method of one measurement and multiple evaluations of CR was established to achieve the goal of simplifying the analytical process and reducing costs. CONCLUSION Through a combination of fingerprint analysis, antioxidant activity evaluation, fingerprint-efficacy relationship analysis, and simultaneous quantification of multiple components, a CR quality control index and method have been selected and established, which can also provide a more comprehensive quality evaluation for traditional Chinese medicine.
Collapse
Affiliation(s)
- Mengyin Tian
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Yaqing Yin
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Haonan Zhou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, Shandong, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, Shandong, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
- National Glycoengineering Research Centre, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Li S, Huang X, Li Y, Ding R, Wu X, Li L, Li C, Gu R. Spectrum-Effect Relationship in Chinese Herbal Medicine: Current Status and Future Perspectives. Crit Rev Anal Chem 2023; 55:353-374. [PMID: 38127670 DOI: 10.1080/10408347.2023.2290056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The quality of Chinese herbal medicine (CHM) directly impacts clinical efficacy and safety. Fingerprint technology is an internationally recognized method for evaluating the quality of CHM. However, the existing quality evaluation models based on fingerprint technology have blocked the ability to assess the internal quality of CHM and cannot comprehensively reflect the correlation between pharmacodynamic information and active constituents. Through mathematical methods, a connection between the "Spectrum" (fingerprint) and the "Effect" (pharmacodynamic data) was established to conduct a spectrum-effect relationship (SER) of CHM to unravel the active component information associated with the pharmacodynamic activity. Consequently, SER can efficiently address the limitations of the segmentation of chemical components and pharmacodynamic effect in CHM and further improve the quality evaluation of CHM. This review focuses on the recent research progress of SER in the field of CHM, including the establishment of fingerprint, the selection of data analysis methods, and their recent applications in the field of CHM. Various advanced fingerprint techniques are introduced, followed by the data analysis methods used in recent years are summarized. Finally, the applications of SER based on different research subjects are described in detail. In addition, the advantages of combining SER with other data are discussed through practical applications, and the research on SER is summarized and prospected. This review proves the validity and development potential of the SER and provides a reference for the development and application of quality evaluation methods for CHM.
Collapse
Affiliation(s)
- Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuemei Wu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
He P, Zhang C, Yang Y, Tang S, Liu X, Yong J, Peng T. Spectrum-Effect Relationships as an Effective Approach for Quality Control of Natural Products: A Review. Molecules 2023; 28:7011. [PMID: 37894489 PMCID: PMC10609026 DOI: 10.3390/molecules28207011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
As natural products with biological activity, the quality of traditional Chinese medicines (TCM) is the key to their clinical application. Fingerprints based on the types and contents of chemical components in TCM are an internationally recognized quality evaluation method but ignore the correlation between chemical components and efficacy. Through chemometric methods, the fingerprints represented by the chemical components of TCM were correlated with its pharmacodynamic activity results to obtain the spectrum-effect relationships of TCM, which can reveal the pharmacodynamic components information related to the pharmacodynamic activity and solve the limitations of segmentation of chemical components and pharmacodynamic research in TCM. In the 20th anniversary of the proposed spectrum-effect relationships, this paper reviews its research progress in the field of TCM, including the establishment of fingerprints, pharmacodynamic evaluation methods, chemometric methods and their practical applications in the field of TCM. Furthermore, the new strategy of spectrum-effect relationships research in recent years was also discussed, and the application prospects of this technology were discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Teng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (P.H.); (C.Z.); (Y.Y.); (S.T.); (X.L.); (J.Y.)
| |
Collapse
|
16
|
Zhang L, Li R, Zheng T, Wu H, Yin Y. An integrated analytical strategy to decipher the metabolic profile of alkaloids in Compound Kushen injection based on UHPLC-ESI-QTOF/MS E. Xenobiotica 2023:1-29. [PMID: 37335262 DOI: 10.1080/00498254.2023.2227976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/21/2023]
Abstract
1. Compound Kushen injection (CKI) is a kind of sterilized water-soluble traditional Chinese medicine preparation that has been used for the clinical treatment of a variety of cancers (hepatocellular carcinoma, lung cancer, etc.) for nineteen years. However, to date, the metabolism-related study on CKI in vivo has not been conducted.2. An integrated analytical strategy was established to investigate the metabolic profile of alkaloids of CKI in rat plasma, urine and feces based on ultra-high performance liquid chromatography-electrospray quadrupole time-of-flight mass spectrometry in MSE mode (UHPLC-ESI-QTOF/MSE).3. Nineteen prototype alkaloids (including 12 matrine-type alkaloids, 2 cytisine-type alkaloids, 3 lupinine-type alkaloids, and 2 aloperine-type alkaloids) of CKI were identified in vivo. Furthermore, seventy-one metabolites of alkaloids (including 11 of lupanine-related metabolites, 14 of sophoridine-related metabolites, 14 of lamprolobine-related metabolites and 32 of baptifoline-related metabolites) were tentatively characterized. Metabolic pathways involved in the metabolism of phase I (include oxidation, reduction, hydrolysis, and desaturation), phase II (mainly include glucuronidation, acetylcysteine or cysteine conjugation, methylation, acetylation and sulfation) and associated combination reactions.4. The integrated analytical strategy was successfully used to characterize the prototype alkaloids and their metabolites in CKI, and the results laying a foundation for further study its pharmacodynamic substances in vivo.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Ting Zheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine & Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Yanyan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|