1
|
Zhu M, Jiang S, Li X, Zhong W, Cao W, Luo Q, Wu A, Wu G, Zhang Q. TP8, A Novel Chondroinductive Peptide, Significantly Promoted Neo-Cartilage Repair without Activating Bone Formation. Adv Healthc Mater 2025; 14:e2401752. [PMID: 39690790 PMCID: PMC11874676 DOI: 10.1002/adhm.202401752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/16/2024] [Indexed: 12/19/2024]
Abstract
The repair of large cartilage defects remains highly challenging in the fields of orthopedics and oral and maxillofacial surgery. A chondroinductive agent is promising to activate endogenous mesenchymal stem cells (MSCs) so as to facilitate cartilage regeneration. In this study, we analyze the crystallographic data of the critical binding domain of transforming growth factor β3 (TGF-β3) with its type II receptor and successfully develop a novel chondroinductive peptide - TGF-β3-derived peptide No. 8 (TP8) that can induce an ectopic cartilage formation without obvious bone formation. TP8 shows a comparable capacity as TGF-β3 in enhancing glycosaminoglycans (GAGs) and proteoglycans (PGs) secretion in the micromass of bone marrow MSCs (BMSCs) and promoting the expression of chondrogenic markers in comparison with the Control group. TP8 induces a significantly higher expression of the SRY-box transcription factor 9 (Sox9) gene than TGF-β3. Moreover, TP8 significantly upregulates the phosphorylation of Smad1/5 but not MAPK/JNK or Smad 2/3. The knockdown of low-density lipoprotein receptor (LDLR) -related protein-1 (Lrp1), a transmembrane endocytosis receptor, nullifies the TP8-induced Sox9 expression. In the critical-size cartilage defects in rabbit medial femoral condyles, TP8 can induce neo-cartilage formation with a significantly thicker deep zone in comparison with the TGF-β3 and Control. These findings suggest a promising application potential of TP8 in cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingjing Zhu
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdam1081 LAthe Netherlands
| | - Siqing Jiang
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Xingyang Li
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Wenchao Zhong
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
- Department of Human GeneticsAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdam1081 HZNetherlands
- Department of Clinical ChemistryAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdam1081 HVNetherlands
- Amsterdam Movement SciencesTissue Function and RegenerationAmsterdam1081 HVNetherlands
| | - Wei Cao
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Qianting Luo
- Department of maxillofacial surgeryJiangmen Central HospitalJiangmen529030China
| | - Antong Wu
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Gang Wu
- Savid School of StomatologyHangzhou Medical CollegeHangzhou311399China
| | - Qingbin Zhang
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| |
Collapse
|
2
|
Virseda-Berdices A, Brochado-Kith Ó, Berenguer J, González-García J, Pérez-Latorre L, Busca C, Díez C, Micán R, Fernández-Rodríguez A, Jiménez-Sousa MÁ, Resino S. PBMCs gene expression predicts liver fibrosis regression after successful HCV therapy in HIV/HCV-coinfected patients. Front Pharmacol 2025; 15:1436198. [PMID: 39911830 PMCID: PMC11794839 DOI: 10.3389/fphar.2024.1436198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/27/2024] [Indexed: 02/07/2025] Open
Abstract
Background HCV eradication with antiviral treatment reduces hepatic disease, but some patients remain at risk of progression to cirrhosis despite HCV clearance. We aimed to examine the association between peripheral blood mononuclear cells (PBMCs) gene expression before HCV therapy and a pronounced decrease in the liver stiffness measurement (LSM) value in HIV/HCV-coinfected patients after HCV treatment and achievement of sustained virological response (SVR). Methods We performed a retrospective study in 48 HIV/HCV-coinfected patients who started anti-HCV treatment with at least advanced fibrosis (LSM ≥9.5). Total RNA was extracted from PBMCs at baseline, and poly(A) RNA sequencing was performed. The outcome was an LSM reduction greater than 50% (LSMred>50%) about 48 weeks after HCV treatment. Results Seven patients (14.5%) reduced LSM by over 50%. We found 47 significant differentially expressed (SDE) genes associated with reaching an LSMred>50% after achieving HCV eradication, 42 upregulated and 5 downregulated in the LSMred>50% group. Ten and five of these upregulated genes were classified into two significantly enriched KEGG pathways: cell cycle and progesterone-mediated oocyte maturation (q-value <0.05), respectively. Two SDE genes achieved excellent discrimination ability: NCAPG had an AUROC of 0.908, NHLRC1 of 0.879, and a logistic regression model with these two genes of 0.955. Conclusion A pre-treatment gene expression signature in PBMCs was associated with liver fibrosis regression (LSMred>50%) after achieving HCV clearing with HCV therapy in HIV/HCV-coinfected patients, where two SDE genes (NCAPG and NHLRC1) showed the greatest predictive capacity, which could be used as a noninvasive marker of liver fibrosis regression.
Collapse
Affiliation(s)
- Ana Virseda-Berdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Óscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Maranón”, Madrid, Spain
- Instituto de Investigación Sanitaria del Gregorio Maranón, Madrid, Spain
| | - Juan González-García
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de VIH; Servicio de Medicina Interna, Hospital Universitario “La Paz”, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Leire Pérez-Latorre
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Maranón”, Madrid, Spain
- Instituto de Investigación Sanitaria del Gregorio Maranón, Madrid, Spain
| | - Carmen Busca
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de VIH; Servicio de Medicina Interna, Hospital Universitario “La Paz”, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Cristina Díez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Maranón”, Madrid, Spain
- Instituto de Investigación Sanitaria del Gregorio Maranón, Madrid, Spain
| | - Rafael Micán
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de VIH; Servicio de Medicina Interna, Hospital Universitario “La Paz”, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Yan X, Inta A, Yang X, Pandith H, Disayathanoowat T, Yang L. An Investigation of the Effect of the Traditional Naxi Herbal Formula Against Liver Cancer Through Network Pharmacology, Molecular Docking, and In Vitro Experiments. Pharmaceuticals (Basel) 2024; 17:1429. [PMID: 39598341 PMCID: PMC11597843 DOI: 10.3390/ph17111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The formula Chong-Lou-Yao-Fang (CLYF) is an herbal medicinal formulation developed by the indigenous Naxi people for treating liver cancer. This study was to reveal the biological activity, potential targets, and molecular mechanisms of CLYF for cancer treatment. Methods: Network pharmacology, microarray data analysis, survival analysis, and molecular docking were employed to predict potential compounds, targets, and pathways for the treatment of liver cancer. In vitro experiments and Western blot validation were conducted to confirm these predictions. Results: 35 key compounds and 20 core targets were screened from CLYF, involving signaling pathways for PI3K-Akt, MAPK, hepatitis B and C, which were effective for liver cancer treatment. Microarray data analysis and survival analysis indicated that EGFR and TP53 serve as promising biomarkers for diagnosis and prognosis in liver cancer. Molecular docking revealed stable binding between EGFR, TP53, and AKT1 with active ingredients. Cell experiments confirmed that CLYF-A suppressed cell proliferation, induced apoptosis, and caused cell cycle arrest in HepG2 cells, which were associated with a loss of mitochondrial membrane potential. Compared to the control group, the relative protein expression levels of EGFR and AKT1 significantly decreased following treatment with CLYF-A, while TP53 levels increased significantly. Conclusions: Verification of the anticancer activity of CLYF and its potential mechanisms may have important implications for anticancer therapies. Our results may provide a scientific basis for the clinical use of CLYF for cancer treatment and have important implications for developing pharmaceutical preparations, which also need more pharmacological experiments, clinical experiments, and in vivo experiments.
Collapse
Affiliation(s)
- Xiuxiang Yan
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (X.Y.)
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; (A.I.); (H.P.)
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; (A.I.); (H.P.)
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (X.Y.)
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Hataichanok Pandith
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; (A.I.); (H.P.)
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; (A.I.); (H.P.)
| | - Lixin Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.Y.); (X.Y.)
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| |
Collapse
|
4
|
Chen Z, Wang J, Peng P, Liu G, Dong M, Zhang X, Zhang Y, Yang X, Wan L, Xiang W, Zhang S, Zhang B, Wu Q, Yu X, Wan F. Hypoxia-induced TGFBI maintains glioma stem cells by stabilizing EphA2. Theranostics 2024; 14:5778-5792. [PMID: 39346536 PMCID: PMC11426234 DOI: 10.7150/thno.95141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Rationale: Glioma stem cells (GSCs) have emerged as pivotal drivers of tumor malignancy, sustained by various microenvironmental factors, including immune molecules and hypoxia. In our previous study, we elucidated the significant role of transforming growth factor beta-induced protein (TGFBI), a protein secreted by M2-like tumor-associated macrophages, in promoting the malignant behavior of glioblastoma (GBM) under normoxic conditions. Building upon these findings, the objective of this study was to comprehensively explore the crucial role and underlying mechanisms of autocrine TGFBI in GSCs under hypoxic conditions. Methods: We quantified TGFBI expression in glioma specimens and datasets. In vitro and in vivo assays were employed to investigate the effects of TGFBI on sustaining self-renewal and tumorigenesis of GSCs under hypoxia. RNA-seq and LC-MS/MS were conducted to explore TGFBI signaling mechanisms. Results: TGFBI is preferentially expressed in GSCs under hypoxic conditions. Targeting TGFBI impair GSCs self-renewal and tumorigenesis. Mechanistically, TGFBI was upregulated by HIF1α in GSCs and predominantly activates the AKT-c-MYC signaling pathway in GSCs by stabilizing the EphA2 protein through preventing its degradation. Conclusion: TGFBI plays a crucial role in maintaining the stem cell properties of GSCs in the hypoxic microenvironment. Targeting the TGFBI/EphA2 axis emerges as a promising and innovative strategy for GBM treatment, with the potential to improve the clinical outcomes of patients.
Collapse
Affiliation(s)
- Zirong Chen
- Department of General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou, China
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhong Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Peng
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Guohao Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Minhai Dong
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaolin Zhang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Zhang
- Department of Histology and Embryology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Xue Yang
- Department of Oncology, Tianjin Huanghe Hospital, Tianjin, China
| | - Lijun Wan
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Xiang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuxia Wu
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingjiang Yu
- Department of Histology and Embryology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wan
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
Tu H, Feng Y, Wang W, Zhou H, Cai Q, Feng Y. Exploring the mechanism of bioactive components of Prunella vulgaris L. in treating hepatocellular carcinoma based on network pharmacology. Chem Biol Drug Des 2024; 103:e14413. [PMID: 38040415 DOI: 10.1111/cbdd.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
In traditional Chinese Medicine, Prunella vulgaris L. (PVL) is potentially effective in the treatment of some human malignancies including hepatocellular carcinoma (HCC). However, the detailed mechanism of action remains unclear. The purpose of this study was to decipher the constitutes of the bioactive ingredients of PVL, and its mechanism against HCC using network pharmacology and in vitro experiments. The bioactive components of PVL were obtained by Traditional Chinese Medicine System Pharmacology Database and Analysis platform database, and the targets of bioactive components of PVL was investigated by Swiss Target Prediction database. HCC related targets were obtained from GEO database, GeneCards database and DisGeNET database, and the gene ontology function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted for annotating the biological function of gene targets. A protein-protein interaction network was constructed using STRING database. Molecular docking of key bioactive ingredients was performed using AutoDock Vina. Cell proliferation and apoptosis were detected by cell counting kit-8 and flow cytometry, respectively. The expression level of the target genes of PI3K/Akt pathway were detected by qPCR. In the present work, 11 bioactive components of PVL were screened out, which acted on 177 potential targets. In addition, 13,517 genes were strongly associated with HCC pathogenesis, of which 158 targets are overlapped with PVL's targets. KEGG results identified 39 signaling pathways closely associated with the 158 targets. Molecular docking showed that the main bioactive components of PVL, kaempferol, morin, quercetin, luteolin, and spinasterol, had good binding activity with the core proteins in cancer biology such as AKT1, EGFR, SRC, ESR1, and PPARG. In vitro assays showed that quercetin, one of the main components of PVL extracts effectively inhibited HCC cell proliferation, and promoted apoptosis, which may be associated with PI3K/AKT signaling pathway. In summary, PVL may regulate HCC progression by regulating core targets such as AKT1, EGFR, SRC, ESR1, and PPARG, and acting on PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Huahua Tu
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Yanqing Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Huadong Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Qinghe Cai
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Yong Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| |
Collapse
|
6
|
Milliana A, Listiyana A, Mutiah R, Annisa R, Firdausi AF, Faradila VA, Febriani A, Ainina EI, Nabila Kirana NL, Yueniwati Y. The Potential of Eleutherine bulbosa in Inducing Apoptosis and Inhibiting Cell Cycle in Breast Cancer: A Network Pharmacology Approach and In Vitro Experiments. Asian Pac J Cancer Prev 2023; 24:3783-3794. [PMID: 38019236 PMCID: PMC10772747 DOI: 10.31557/apjcp.2023.24.11.3783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the potential and mechanisms of phytochemicals in Eleutherine bulbosa (EBE) in inducing apoptosis and inhibiting the cell cycle in breast cancer through a network pharmacology approach and in vitro validation. METHODS This research employed a literature review approach to identify active anti-cancer compounds and utilized a network pharmacology approach to predict the mechanisms of action of EBE compounds in breast cancer. In addition, in vitro experiments were conducted using MTT method to evaluate the effects of EBE on the cytotoxicity of T47D cells, and the flow cytometry method was employed to determine the impact of EBE on apoptosis and the cell cycle. RESULTS The network pharmacology analysis revealed that EBE had an impact on 42 genes involved in breast cancer, including 23 important target genes implicated in the pathophysiology of breast cancer. Pathway analysis using the KEGG database showed a close association between EBE and crucial signaling pathways in breast cancer, including P53 signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, apoptosis and cell cycle. In vitro experiments demonstrated that EBE exhibited moderate anti-cancer activity. Furthermore, EBE demonstrated significant potential in inducing apoptosis in breast cancer cells, with a percentage of apoptotic cells reaching 93.6%. Additionally, EBE was observed to disrupt the cell cycle, leading to a significant increase in the sub G1 and S phases, and a significant decrease in the G2-M and G1 phases. CONCLUSION EBE has the potential to be an anti-cancer agent through various mechanisms, including apoptosis induction and cell cycle inhibition in breast cancer cells. These findings provide new insights into the potential of EBE as an alternative treatment for breast cancer.
Collapse
Affiliation(s)
- Alvi Milliana
- Department of Medicine, Faculty of Medicine and Health Sciences, UIN Maulana Malik Ibrahim Malang, East Java, Indonesia.
| | - Anik Listiyana
- Department of Medicine, Faculty of Medicine and Health Sciences, UIN Maulana Malik Ibrahim Malang, East Java, Indonesia.
| | - Roihatul Mutiah
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UIN Maulana Malik Ibrahim Malang, East Java, Indonesia.
| | - Rahmi Annisa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UIN Maulana Malik Ibrahim Malang, East Java, Indonesia.
| | - Alif Firman Firdausi
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UIN Maulana Malik Ibrahim Malang, East Java, Indonesia.
| | - Vira Azzara Faradila
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UIN Maulana Malik Ibrahim Malang, East Java, Indonesia.
| | - Anisa Febriani
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UIN Maulana Malik Ibrahim Malang, East Java, Indonesia.
| | - Elsa Iftita Ainina
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UIN Maulana Malik Ibrahim Malang, East Java, Indonesia.
| | - Nariswari Lutfi Nabila Kirana
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UIN Maulana Malik Ibrahim Malang, East Java, Indonesia.
| | - Yuyun Yueniwati
- Department of Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia, East Java, Indonesia.
| |
Collapse
|
7
|
Xu X, Fan X, Wu X, Xia R, Liang J, Gao F, Shu J, Yang M, Sun W. Luteolin ameliorates necroptosis in Glucocorticoid-induced osteonecrosis of the femoral head via RIPK1/RIPK3/MLKL pathway based on network pharmacology analysis. Biochem Biophys Res Commun 2023; 661:108-118. [PMID: 37099894 DOI: 10.1016/j.bbrc.2023.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is deeply relevant to damage and dysfunction of bone microvascular endothelial cells (BMECs). Recently, necroptosis, a newly programmed cell death with necrotic appearance, has garnered increasing attention. Luteolin, a flavonoid compound derived from Rhizoma Drynariae, has numerous pharmacological properties. However, the effect of Luteolin on BMECs in GIONFH through the necroptosis pathway has not been extensively investigated. Based on network pharmacology analysis, 23 genes were identified as potential targets for the therapeutic effect of Luteolin in GIONFH via the necroptosis pathway, with RIPK1, RIPK3, and MLKL being the hub genes. Immunofluorescence staining results revealed high expression of vWF and CD31 in BMECs. In vitro experiments showed that incubation with dexamethasone led to reduced proliferation, migration, angiogenesis ability, and increased necroptosis of BMECs. However, pretreatment with Luteolin attenuated this effect. Based on molecular docking analysis, Luteolin exhibited strong binding affinity with MLKL, RIPK1, and RIPK3. Western blotting was utilized to detect the expression of p-MLKL, MLKL, p-RIPK3, RIPK3, p-RIPK1, and RIPK1. Intervention with dexamethasone resulted in a significant increase in the p-RIPK1/RIPK1 ratio, but the effects of dexamethasone were effectively counteracted by Luteolin. Similar findings were observed for the p-RIPK3/RIPK3 ratio and the p-MLKL/MLKL ratio, as anticipated. Therefore, this study demonstrates that Luteolin can reduce dexamethasone-induced necroptosis in BMECs via the RIPK1/RIPK3/MLKL pathway. These findings provide new insights into the mechanisms underlying the therapeutic effects of Luteolin in GIONFH treatment. Additionally, inhibiting necroptosis could be a promising novel approach for GIONFH therapy.
Collapse
Affiliation(s)
- Xin Xu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100029, China.
| | - Xiaoyu Fan
- Peking University Health Science Center, China-Japan Friendship, School of Clinical Medicine, Beijing, 100029, China.
| | - Xinjie Wu
- Peking University Health Science Center, China-Japan Friendship, School of Clinical Medicine, Beijing, 100029, China.
| | - Runzhi Xia
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100029, China.
| | - Jiaming Liang
- Peking University Health Science Center, China-Japan Friendship, School of Clinical Medicine, Beijing, 100029, China.
| | - Fuqiang Gao
- Orthopedics Department, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Jun Shu
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Meng Yang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wei Sun
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100029, China; Orthopedics Department, China-Japan Friendship Hospital, Beijing, 100029, China; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
| |
Collapse
|