1
|
Nyberg H, Bogen IL, Duale N, Andersen JM. Prenatal exposure to methadone or buprenorphine alters transcriptional networks associated with synaptic signaling in newborn rats. Neuropharmacology 2025; 270:110368. [PMID: 39956318 DOI: 10.1016/j.neuropharm.2025.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
While the use of methadone or buprenorphine during pregnancy is beneficial for the mother's health compared to illicit opioid use, prenatal exposure to these medications may have adverse consequences for the unborn child. However, the underlying molecular mechanisms of prenatal opioid exposure on neurodevelopment remain poorly understood. Hence, this study aimed to investigate gene expression changes, focusing on synapse-related genes, in cerebral tissue from newborn rats prenatally exposed to methadone or buprenorphine. Female Sprague-Dawley rats were exposed to methadone (10 mg/kg/day), buprenorphine (1 mg/kg/day), or sterile water through osmotic minipumps during pregnancy. Total RNA was isolated from the cerebrum on postnatal day 2 and analyzed using RNA-sequencing. Analyses of differentially expressed genes (DEGs) and enriched biological processes were conducted to compare the gene expression profiles between treatment groups within each sex. Prenatal buprenorphine exposure resulted in 598 DEGs (333 up- and 265 downregulated) in males and 175 (75 up- and 100 downregulated) in females, while prenatal methadone exposure resulted in 335 DEGs (224 up- and 111 downregulated) in males and 201 (57 up- and 144 downregulated) in females. Gene ontology analyses demonstrated that enriched biological processes included synaptic signaling, immune responses, and apoptosis. Analysis of the DEGs using the synapse database SynGO revealed that males prenatally exposed to buprenorphine displayed the highest number of enriched synapse-related biological process terms. Understanding gene expression changes following prenatal methadone or buprenorphine exposure is crucial to uncover the mechanisms underlying behavioral alterations and to develop interventions to mitigate the impact of opioid exposure on neurodevelopment.
Collapse
Affiliation(s)
- Henriette Nyberg
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Inger Lise Bogen
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Nur Duale
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Jannike Mørch Andersen
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Huang JY, Hess M, Bajpai A, Li X, Hobson LN, Xu AJ, Barton SJ, Lu HC. From initial formation to developmental refinement: GABAergic inputs shape neuronal subnetworks in the primary somatosensory cortex. iScience 2025; 28:112104. [PMID: 40129704 PMCID: PMC11930745 DOI: 10.1016/j.isci.2025.112104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neuronal subnetworks, also known as ensembles, are functional units formed by interconnected neurons for information processing and encoding in the adult brain. Our study investigates the establishment of neuronal subnetworks in the mouse primary somatosensory (S1) cortex from postnatal days (P)11 to P21 using in vivo two-photon calcium imaging. We found that at P11, neuronal activity was highly synchronized but became sparser by P21. Clustering analyses revealed that while the number of subnetworks remained constant, their activity patterns became more distinct, with increased coherence, independent of cortical layer or sex. Furthermore, the coherence of neuronal activity within individual subnetworks significantly increased when synchrony frequencies were reduced by augmenting gamma-aminobutyric acid (GABA)ergic activity at P15/16, a period when the neuronal subnetworks were still maturing. Together, these findings indicate the early formation of subnetworks and underscore the pivotal roles of GABAergic inputs in modulating S1 neuronal subnetworks.
Collapse
Affiliation(s)
- Jui-Yen Huang
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Michael Hess
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Abhinav Bajpai
- Research Technologies, Indiana University, Bloomington, IN 47408, USA
| | - Xuan Li
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Liam N. Hobson
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ashley J. Xu
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Scott J. Barton
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Hui-Chen Lu
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Pinkston BTC, Browning JL, Olsen ML. Astrocyte TrkB.T1 deficiency disrupts glutamatergic synaptogenesis and astrocyte-synapse interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619696. [PMID: 39484608 PMCID: PMC11526899 DOI: 10.1101/2024.10.22.619696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Perisynaptic astrocyte processes (PAPs) contact pre- and post-synaptic elements to provide structural and functional support to synapses. Accumulating research demonstrates that the cradling of synapses by PAPs is critical for synapse formation, stabilization, and plasticity. The specific signaling pathways that govern these astrocyte-synapse interactions, however, remain to be elucidated. Herein, we demonstrate a role for the astrocyte TrkB.T1 receptor, a truncated isoform of the canonical receptor for brain derived neurotrophic factor (BDNF), in modulating astrocyte-synapse interactions and excitatory synapse development. Neuron-astrocyte co-culture studies revealed that loss of astrocyte TrkB.T1 disrupts the formation of PAPs. To elucidate the role of TrkB.T1 in synapse development, we conditionally deleted TrkB.T1 in astrocytes in mice. Synaptosome preparations were employed to probe for TrkB.T1 localization at the PAP, and confocal three-dimensional microscopy revealed a significant reduction in synapse density and astrocyte-synapse interactions across development in the absence of astrocytic TrkB.T1. These findings suggest that BDNF/TrkB.T1 signaling in astrocytes is critical for normal excitatory synapse formation in the cortex and that astrocyte TrkB.T1 serves a requisite role in astrocyte synapse interactions. Overall, this work provides new insights into the molecular mechanisms of astrocyte-mediated synaptogenesis and may have implications for understanding neurodevelopmental disorders and developing potential therapeutic targets.
Collapse
|
4
|
Duffus BLM, Haggerty DL, Doud EH, Mosley AL, Yamamoto BK, Atwood BK. The impact of abstinence from chronic alcohol consumption on the mouse striatal proteome: sex and subregion-specific differences. Front Pharmacol 2024; 15:1405446. [PMID: 38887549 PMCID: PMC11180734 DOI: 10.3389/fphar.2024.1405446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Alcohol misuse is the third leading preventable cause of death in the world. The World Health Organization currently estimates that 1 in 20 deaths are directly alcohol related. One of the ways in which consuming excessive levels of alcohol can both directly and indirectly affect human mortality and morbidity, is through chronic inflammation. Recently, studies have suggested a link between increased alcohol use and the incidence of neuroinflammatory-related diseases. However, the mechanism in which alcohol potentially influences neuroinflammatory processes is still being uncovered. We implemented an unbiased proteomics exploration of alcohol-induced changes in the striatum, with a specific emphasis on proteins related to inflammation. The striatum is a brain region that is critically involved with the progression of alcohol use disorder. Using mass spectrometry following voluntary alcohol self-administration in mice, we show that distinct protein abundances and signaling pathways in different subregions of the striatum are disrupted by chronic exposure to alcohol compared to water drinking control mice. Further, in mice that were allowed to experience abstinence from alcohol compared to mice that were non-abstinent, the overall proteome and signaling pathways showed additional differences, suggesting that the responses evoked by chronic alcohol exposure are dependent on alcohol use history. To our surprise we did not find that chronic alcohol drinking or abstinence altered protein abundance or pathways associated with inflammation, but rather affected proteins and pathways associated with neurodegeneration and metabolic, cellular organization, protein translation, and molecular transport processes. These outcomes suggest that in this drinking model, alcohol-induced neuroinflammation in the striatum is not a primary outcome controlling altered neurobehavioral function, but these changes are rather mediated by altered striatal neuronal structure and cellular health.
Collapse
Affiliation(s)
- Brittnie-lee M. Duffus
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David L. Haggerty
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | | |
Collapse
|
5
|
Ferrante JR, Blendy JA. Advances in animal models of prenatal opioid exposure. Trends Neurosci 2024; 47:367-382. [PMID: 38614891 PMCID: PMC11096018 DOI: 10.1016/j.tins.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
Neonatal opioid withdrawal syndrome (NOWS) is a growing public health concern. The complexity of in utero opioid exposure in clinical studies makes it difficult to investigate underlying mechanisms that could ultimately inform early diagnosis and treatments. Clinical studies are unable to dissociate the influence of maternal polypharmacy or the environment from direct effects of in utero opioid exposure, highlighting the need for effective animal models. Early animal models of prenatal opioid exposure primarily used the prototypical opioid, morphine, and opioid exposure that was often limited to a narrow period during gestation. In recent years, the number of preclinical studies has grown rapidly. Newer models utilize both prescription and nonprescription opioids and vary the onset and duration of opioid exposure. In this review, we summarize novel prenatal opioid exposure models developed in recent years and attempt to reconcile results between studies while critically identifying gaps within the current literature.
Collapse
Affiliation(s)
- Julia R Ferrante
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Li Z, Ouyang H, Zhu J. Traditional Chinese medicines and natural products targeting immune cells in the treatment of metabolic-related fatty liver disease. Front Pharmacol 2023; 14:1195146. [PMID: 37361209 PMCID: PMC10289001 DOI: 10.3389/fphar.2023.1195146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver disease affecting one-third of adults worldwide, and is strongly associated with obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of conditions ranging from simple liver fat accumulation to advanced stages like chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular carcinoma. With limited approved drugs for MAFLD, identifying promising drug targets and developing effective treatment strategies is essential. The liver plays a critical role in regulating human immunity, and enriching innate and adaptive immune cells in the liver can significantly improve the pathological state of MAFLD. In the modern era of drug discovery, there is increasing evidence that traditional Chinese medicine prescriptions, natural products and herb components can effectively treat MAFLD. Our study aims to review the current evidence supporting the potential benefits of such treatments, specifically targeting immune cells that are responsible for the pathogenesis of MAFLD. By providing new insights into the development of traditional drugs for the treatment of MAFLD, our findings may pave the way for more effective and targeted therapeutic approaches.
Collapse
|