1
|
de Souza Carvalho L, de Souza LO, Ramos YJ, da Silva NCB. Deciphering the historical tapestry of medicinal plants and remedies in Brazil: an analysis of sales records from the Botica Real between 1806 and 1818. ADVANCES IN TRADITIONAL MEDICINE 2024; 24:1093-1113. [DOI: 10.1007/s13596-024-00759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/02/2024] [Indexed: 01/05/2025]
|
2
|
Zhong J, Chen Y, Shi H, Zhou T, Wang C, Guo Z, Liang Y, Zhang Q, Sun M. Identification and functional analysis of terpene synthases revealing the secrets of aroma formation in Chrysanthemum aromaticum. Int J Biol Macromol 2024; 279:135377. [PMID: 39244131 DOI: 10.1016/j.ijbiomac.2024.135377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/18/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
C. aromaticum is widely cultivated for its aromatic, medicinal, and tea-applicable properties, earning the nickname 'lavender in composite'. Terpenoids are the major compounds of C. aromaticum fragrance. To reveal the molecular mechanisms of terpenoid biosynthesis in C. aromaticum, NGS and SMRT sequencing were employed to identify the key terpene synthase genes. A total of 59,903 non-redundant transcripts were obtained by the transcriptome analysis. Twenty-nine terpene synthase genes (TPSs) were identified, and phylogenetic analysis showed that they belong to four subfamilies of terpene synthases. Five CaTPSs were successfully cloned. Subcellular localization showed they were present in the nucleus and cytosol. Structure models of five terpene synthases were predicted, and molecular docking results showed good binding affinities with FPP/GPP. In vitro enzymatic tests showed that CaTPS7, CaTPS8, CaTPS10 and CaTPS20 could catalyze substrates to produce terpenoids. CaTPS7 and CaTPS20 were both able to effectively convert the precursor FPP into caryophyllene. CaTPS8 could convert FPP to trans-nerolidol and nerolidyl acetate, while CaTPS10 could convert FPP to elemene and aristolochene. This study lays the groundwork for further research to depict the metabolism network of terpenoid in C. aromaticum. These identical terpene synthase genes could be introduced into the cultivated chrysanthemums to enhance their fragrance.
Collapse
Affiliation(s)
- Jian Zhong
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijng Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yuyuan Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijng Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Huajin Shi
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijng Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tongjun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijng Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Chen Wang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijng Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Ziyu Guo
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijng Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yilin Liang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijng Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijng Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijng Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Kungwani NA, Panda J, Mishra AK, Chavda N, Shukla S, Vikhe K, Sharma G, Mohanta YK, Sharifi-Rad M. Combating bacterial biofilms and related drug resistance: Role of phyto-derived adjuvant and nanomaterials. Microb Pathog 2024; 195:106874. [PMID: 39181190 DOI: 10.1016/j.micpath.2024.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The emergence of antimicrobial resistance (AMR) in clinical microbes has led to a search for novel antibiotics for combating bacterial infections. The treatment of bacterial infections becomes more challenging with the onset of biofilm formation. AMR is further accelerated by biofilm physiology and differential gene expression in bacteria with an inherent resistance to conventional antibiotics. In the search for innovative strategies to control the spread of AMR in clinical isolates, plant-derived therapeutic metabolites can be repurposed to control biofilm-associated drug resistance. Unlike antibiotics, designed to act on a single cellular process, phytochemicals can simultaneously target multiple cellular components. Furthermore, they can disrupt biofilm formation and inhibit quorum sensing, offering a comprehensive approach to combat bacterial infections. In bacterial biofilms, the first line of AMR is due to biofilms associated with the extracellular matrix, diffusion barriers, quorum sensing, and persister cells. These extracellular barriers can be overcome using phytochemical-based antibiotic adjuvants to increase the efficacy of antibiotic treatment and restrict the spread of AMR. Furthermore, phytochemicals can be used to target bacterial intracellular machinery such as DNA replication, protein synthesis, efflux pumps, and degrading enzymes. In parallel with pristine phytochemicals, phyto-derived nanomaterials have emerged as an effective means of fighting bacterial biofilms. These nanomaterials can be formulated to cross the biofilm barriers and function on cellular targets. This review focuses on the synergistic effects of phytochemicals and phyto-derived nanomaterials in controlling the progression of biofilm-related AMR. IT provides comprehensive insights into recent advancements and the underlying mechanisms of the use of phyto-derived adjuvants and nanomaterials.
Collapse
Affiliation(s)
- Neelam Amit Kungwani
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, 793101, Meghalaya, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Sudhir Shukla
- Homi Bhabha National Institute, Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, Tamilnadu, 603102, India
| | - Kalyani Vikhe
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Gunjan Sharma
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, 793101, Meghalaya, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| |
Collapse
|
4
|
Lahlou RA, Carvalho F, Pereira MJ, Lopes J, Silva LR. Overview of Ethnobotanical-Pharmacological Studies Carried Out on Medicinal Plants from the Serra da Estrela Natural Park: Focus on Their Antidiabetic Potential. Pharmaceutics 2024; 16:454. [PMID: 38675115 PMCID: PMC11054966 DOI: 10.3390/pharmaceutics16040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The Serra da Estrela Natural Park (NPSE) in Portugal stands out as a well-preserved region abundant in medicinal plants, particularly known for their pharmaceutical applications in diabetes prevention and treatment. This comprehensive review explores these plants' botanical diversity, traditional uses, pharmacological applications, and chemical composition. The NPSE boast a rich diversity with 138 medicinal plants across 55 families identified as traditionally and pharmacologically used against diabetes globally. Notably, the Asteraceae and Lamiaceae families are prevalent in antidiabetic applications. In vitro studies have revealed their significant inhibition of carbohydrate-metabolizing enzymes, and certain plant co-products regulate genes involved in carbohydrate metabolism and insulin secretion. In vivo trials have demonstrated antidiabetic effects, including glycaemia regulation, insulin secretion, antioxidant activity, and lipid profile modulation. Medicinal plants in NPSE exhibit various activities beyond antidiabetic, such as antioxidant, anti-inflammatory, antibacterial, anti-cancer, and more. Chemical analyses have identified over fifty compounds like phenolic acids, flavonoids, terpenoids, and polysaccharides responsible for their efficacy against diabetes. These findings underscore the potential of NPSE medicinal plants as antidiabetic candidates, urging further research to develop effective plant-based antidiabetic drugs, beverages, and supplements.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Filomena Carvalho
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Maria João Pereira
- CERENA/DER, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal;
| | - Luís R. Silva
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
5
|
Ozel‐Tasci C, Gulec S. Golden thistle ( Scolymus hispanicus L.) hydromethanolic extracts ameliorated glucose absorption and inflammatory markers in vitro. Food Sci Nutr 2023; 11:7974-7984. [PMID: 38107090 PMCID: PMC10724633 DOI: 10.1002/fsn3.3716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 12/19/2023] Open
Abstract
Golden thistle (GT, Scolymus hispanicus L.) is an edible plant native to the Mediterranean. Several activities have been reported for the GT, as it is used for traditional medicinal purposes in some cultures. In this study, we aimed to investigate the effects of GT crude extract on phenolic bioavailability, antidiabetic, and anti-inflammatory activities by using colonic epithelium (CaCo-2) and murine macrophage (RAW 264.7) cell lines. The CaCo-2 cells were grown on the bicameral membrane system for intestinal bioavailability and glucose efflux. Lipopolysaccharide (LPS, 0.5 μg/mL) was used to induce systemic inflammation on RAW 264.7. The inflammatory medium of RAW 264.7 cells was given to Caco-2 cells to mimic colonic inflammation. Our results showed that 5-o-caffeoylquinic acid had an apparent permeability of (1.82 ± 0.07) × 10-6 cm/s after 6 h. The extract lowered the glucose efflux by 39.4%-42.6%, in addition to the reductions in relative GLUT2 mRNA expressions by 49%-66% in pre- and co-treatments (p < .05). Decreases in systemic inflammation markers of nitric oxide, tumor necrosis factor-alpha, and interleukin-6 (IL-6) were also detected in 30%-45% range after pre-treatments with the GT extract (p < .05). Lastly, colonic inflammation markers of IL-6 and IL-8 were reduced by 8.7%-19.5% as a result of GT pre-treatments (p < .05). Thus, an in vitro investigation of GT extract revealed promising results on antidiabetic and anti-inflammatory activities.
Collapse
Affiliation(s)
- Cansu Ozel‐Tasci
- Department of Food Engineering, Molecular Nutrition and Cell Physiology LaboratoryIzmir Institute of TechnologyUrlaIzmirTurkey
| | - Sukru Gulec
- Department of Food Engineering, Molecular Nutrition and Cell Physiology LaboratoryIzmir Institute of TechnologyUrlaIzmirTurkey
| |
Collapse
|