1
|
Wu Q, Deng M, Zhao X, Long J, Zhang J. Screening and validation of optimal real-time PCR reference genes for Abelmoschus Manihot. Sci Rep 2025; 15:11045. [PMID: 40169838 PMCID: PMC11961658 DOI: 10.1038/s41598-025-96110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/26/2025] [Indexed: 04/03/2025] Open
Abstract
Abelmoschus Manihot is an important medicinal and edible plant known for its functional secondary metabolites. However, little is known about the key genes involved in production of secondary metabolites in A. manihot. This is largely due to the lack of effective gene expression detection systems for A. manihot, making the screening of real-time PCR reference genes a prerequisite. In this study, 11 candidate reference genes were screened and cloned from A. manihot, and their expression stability was evaluated in different tissues under different flowering stages using four algorithms: geNorm, NormFinder, BestKeeper, and RefFinder. The expression stability of eIF and PP2A1 was the highest, while that of tubulin alpha (TUA) was the lowest. The combined use of the two most stable reference genes, eIF and PP2A1, met the experimental requirements for normalizing gene expression in A. manihot. Furthermore, the gene expression of transcription factors bHLH147 and bHLH148 was further validated by data normalization. This study identified potential reference genes in different A. manihot tissues, paving the way for functional gene analysis and dissecting metabolite regulation mechanisms in A. manihot.
Collapse
Affiliation(s)
- Qixuan Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Meixin Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolan Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianmei Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxia Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Yu H, Tang H, Saxu R, Song Y, Cui X, Xu J, Li N, Cui S, Ge H, Tang W, Gu HF. Effects of Abelmoschus manihot (L.) and its combination with irbesartan in the treatment of diabetic nephropathy via the gut-kidney axis. Front Pharmacol 2024; 15:1424968. [PMID: 39529886 PMCID: PMC11550981 DOI: 10.3389/fphar.2024.1424968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background Clinical observations have recently shown that Abelmoschus manihot (L.) in the form of Huangkui capsule (HKC) and in combination with irbesartan (EB) is an effective therapy for diabetic nephropathy (DN) in patients with type 2 diabetes (T2D). The present study aims to explore the mechanisms underlying the therapeutic efficacies of HKC and its combination with EB in DN via the gut-kidney axis. Methods HKC, EB, and their combination or vehicle were administered in db/db mice, which is an animal model for the study of T2D and DN. Comparative analyses of the gut microbiota, serum metabolites, and kidney transcriptomics before and after drug administration were performed. Results After treatment with HKC, EB, and their combination for 4 weeks, the urinary albumin-to-creatinine ratios decreased significantly in the db/db mice with DN. In terms of the gut microbiota, the abundances of Faecalitalea, Blautia, and Streptococcus increased but those of Bacteroidetes, Firmicutes, Enterobacteriaceae, and Desulfovibrio decreased. Parallelly, serum metabolites, mainly including quercetin 3'-glucuronide and L-dopa, were elevated while cortisol and cytochalasin B were reduced. Furthermore, the S100a8, S100a9, Trem1, and Mmp7 genes in the kidneys were downregulated. These altered elements were associated with proteinuria/albuminuria reduction. However, EB had no effects on the changes in blood pressure and specific differentially expressed genes in the kidneys. Conclusion The present study provides experimental evidence that HKC regulates the gut microbiota, circulating metabolites, and renal gene activities, which are useful for better understanding of the action mechanisms of A. manihot in the treatment of DN through the gut-kidney axis.
Collapse
Affiliation(s)
- Hongmei Yu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Haitao Tang
- Suzhong Pharmaceutical Group Co. Ltd., Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, China
| | - Rengui Saxu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Yuhui Song
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Xu Cui
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jingjing Xu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Nan Li
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Cui
- Department of Endocrinology, Wuxi Second People’s Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Haitao Ge
- Suzhong Pharmaceutical Group Co. Ltd., Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, China
| | - Wei Tang
- Islet Cell Senescence and Function Research Laboratory, Department of Endocrinology, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu Province, China
| | - Harvest F. Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
3
|
Jin J, Zhang M. Exploring the role of NLRP3 inflammasome in diabetic nephropathy and the advancements in herbal therapeutics. Front Endocrinol (Lausanne) 2024; 15:1397301. [PMID: 39104818 PMCID: PMC11299242 DOI: 10.3389/fendo.2024.1397301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Diabetic nephropathy (DN), a prevalent complication of diabetes mellitus (DM), is clinically marked by progressive proteinuria and a decline in glomerular filtration rate. The etiology and pathogenesis of DN encompass a spectrum of factors, including hemodynamic alterations, inflammation, and oxidative stress, yet remain incompletely understood. The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a critical component of the body's innate immunity, plays a pivotal role in the pathophysiology of DN by promoting the release of inflammatory cytokines, thus contributing to the progression of this chronic inflammatory condition. Recent studies highlight the involvement of the NLRP3 inflammasome in the renal pathology associated with DN. This article delves into the activation pathways of the NLRP3 inflammasome and its pathogenic implications in DN. Additionally, it reviews the therapeutic potential of traditional Chinese medicine (TCM) in modulating the NLRP3 inflammasome, aiming to provide comprehensive insights into the pathogenesis of DN and the current advancements in TCM interventions targeting NLRP3 inflammatory vesicles. Such insights are expected to lay the groundwork for further exploration into TCM-based treatments for DN.
Collapse
Affiliation(s)
- Jiangyuan Jin
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mianzhi Zhang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
4
|
Diao Z, Yu H, Wu Y, Sun Y, Tang H, Wang M, Li N, Ge H, Sun J, Gu HF. Identification of the main flavonoids of Abelmoschus manihot (L.) medik and their metabolites in the treatment of diabetic nephropathy. Front Pharmacol 2024; 14:1290868. [PMID: 38313075 PMCID: PMC10836608 DOI: 10.3389/fphar.2023.1290868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction: Huangkui capsule (HKC) is made from the ethanol extract of Abelmoschus manihot (L.) Medik [Malvaceae; abelmoschi corolla] and received approval from the China Food and Drug Administration (Z19990040) in 1999. Currently, HKC is used for treatment of the patients with diabetic nephropathy (DN) in China. The bioactive chemical constituents in HKC are total flavonoids of A. manihot (L.) Medik (TFA). The present study aims to identify the primary flavonoid metabolites in HKC and TFA and their metabolism fates in db/db mice, the animal model for the study of type 2 diabetes and DN. Methods: HKC (0.84 g/kg/d) and TFA (0.076 g/kg/d) or vehicle were respectively administered daily via oral gavage in db/db mice for 4 weeks. The metabolism fate of the main metabolites of HKC in serum, liver, kidney, heart, jejunum, colon, jejunal contents, colonic contents, and urine of db/db mice were analyzed with a comprehensive metabolite identification strategy. Results and Discussion: In db/db mice administered with HKC and TFA, 7 flavonoid prototypes and 38 metabolites were identified. The related metabolic pathways at Phases I and II reactions included dehydroxylation, deglycosylation, hydrogenation, methylation, glucuronidation, sulphation, and corresponding recombined reactions. Quercetin, isorhamnetin, quercetin sulphate, quercetin monoglucuronide, and isorhamnetin monoglucuronide presented a high exposure in the serum and kidney of db/db mice. Thereby, the present study provides a pharmacodynamic substance basis for better understanding the mechanism of A. manihot (L.) Medik for medication of DN.
Collapse
Affiliation(s)
- Zhipeng Diao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Hongmei Yu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yapeng Wu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Yuanbo Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Haitao Tang
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Mei Wang
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Nan Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haitao Ge
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Jianguo Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Harvest F Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Song XM, Zhao MN, Li GZ, Li N, Wang T, Zhou H. Atorvastatin ameliorated myocardial fibrosis in db/db mice by inhibiting oxidative stress and modulating macrophage polarization. World J Diabetes 2023; 14:1849-1861. [PMID: 38222782 PMCID: PMC10784803 DOI: 10.4239/wjd.v14.i12.1849] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND People with diabetes mellitus (DM) suffer from multiple chronic complications due to sustained hyperglycemia, especially diabetic cardiomyopathy (DCM). Oxidative stress and inflammatory cells play crucial roles in the occurrence and progression of myocardial remodeling. Macrophages polarize to two distinct phenotypes: M1 and M2, and such plasticity in phenotypes provide macrophages various biological functions. AIM To investigate the effect of atorvastatin on cardiac function of DCM in db/db mice and its underlying mechanisms. METHODS DCM mouse models were established and randomly divided into DM, atorvastatin, and metformin groups. C57BL/6 mice were used as the control. Cardiac function was evaluated by echocardiography. Hematoxylin and eosin and Masson staining was used to examine the morphology and collagen fibers in myocardial tissues. The expression of transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β),M1 macrophages (iNOS+), and M2 macrophages (CD206+) were demonstrated by immunohistochemistry and immunofluorescence staining. The levels of TGF-β1, IL-1β, and TNF-α were detected by ELISA and real-time quantitative polymerase chain reaction. Malondialdehyde (MDA) concentrations and superoxide dismutase (SOD) ac-tivities were also measured. RESULTS Treatment with atorvastatin alleviated cardiac dysfunction and decreased db/db mice. The broken myocardial fibers and deposition of collagen in the myocardial interstitium were relieved especially by atorvastatin treatment. Atorvastatin also reduced the levels of serum lactate dehydrogenase, creatine kinase isoenzyme, and troponin; lowered the levels of TGF-β1, TNF-α and IL-1β in serum and myocardium; decreased the concentration of MDA and increased SOD activity in myocardium of db/db mice; inhibited M1 macrophages; and promoted M2 macrophages. CONCLUSION Administration of atorvastatin attenuates myocardial fibrosis in db/db mice, which may be associated with the antioxidative stress and anti-inflammatory effects of atorvastatin on diabetic myocardium through modulating macrophage polarization.
Collapse
Affiliation(s)
- Xian-Min Song
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Department of Geriatrics, Handan Central Hospital, Handan 056001, Hebei Province, China
| | - Meng-Nan Zhao
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Gui-Zhi Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ting Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|