1
|
Wang Y, Wang Y, Zhao T, Zhou W, Khan A, Cao J, Liu Y, Wang Z, Cheng G. 6'-O-caffeoylarbutin attenuates D-galactose-induced brain and liver damage in aging mice via regulating SIRT1/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156710. [PMID: 40220424 DOI: 10.1016/j.phymed.2025.156710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/12/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Aging-related liver and brain damage caused by oxidative stress and inflammation significantly impacts health and quality of life. Natural bioactive compounds, such as 6'-O-caffeoylarbutin (CA), which is primarily distributed in Vaccinium species, have been studied for their antioxidant and anti-inflammatory properties. This study aims to investigate the protective effect on liver and brain damage induced by D-galactose (D-gal) in mice and to explore its potential molecular mechanisms. PURPOSE This study aims to investigate the protective effects of CA on D-galactose (D-gal)-induced liver and brain damage in mice and to explore its potential molecular mechanisms. METHODS CA was prepared from Vaccinium dunalianum and identified using UHPLC-ESI-HR-MS/MS. Molecular docking and network pharmacology analysis were performed to predict the binding of CA with SIRT1 and NF-κB1 targets. In vivo, a D-gal-induced aging mouse model was established to evaluate the biochemical, oxidative stress, and inflammatory parameters. The effects of CA on oxidative stress and inflammation were examined through enzymatic activity assays, cytokine level measurements, and histopathological analysis. Western blotting was used to validate the involvement of the SIRT1/NF-κB pathway. RESULTS CA treatment significantly alleviated liver and brain damage in D-gal-induced mice by decreasing AChE, AST, and ALT activities, improving organ indices, and reducing histopathological alterations. CA enhanced antioxidant defense by increasing SOD, CAT, and T-AOC activities, elevating GSH levels, and decreasing MDA content. Furthermore, CA suppressed the inflammatory response by downregulating IL-6 and TNF-α levels. Mechanistically, CA inhibited NF-κB p65 phosphorylation and suppressed iNOS and COX-2 expression, likely via activation of the SIRT1 protein. CONCLUSION This study demonstrates that CA protects against D-gal-induced oxidative stress and inflammation in liver and brain tissues via the SIRT1/NF-κB pathway, supporting its potential as a bioactive compound for preventing aging-related liver and brain damage.
Collapse
Affiliation(s)
- Yongpeng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Yongchao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Wenbing Zhou
- Yunnan Tobacco Company, Yuxi Branch, Yuxi 653100, PR China.
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China.
| |
Collapse
|
2
|
Zhang C, Yu M, Zhang L, Zhou X, Han J, Fu B, Xue H, Zhang C. Exploring the Analgesic Effect of Acupuncture on Knee Osteoarthritis Based on MLT/cAMP/PKA/CREB Signaling Pathway. J Inflamm Res 2025; 18:237-249. [PMID: 39802514 PMCID: PMC11724624 DOI: 10.2147/jir.s498202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
Background Acupuncture is an effective treatment for knee osteoarthritis (KOA), reducing pain and improving function. While melatonin (MLT) has notable pain relief benefits, the analgesic mechanism of acupuncture in KOA and its relationship with melatonin are still unknown. This study aims to explore this mechanism. Methods In this work, the KOA rabbit model was constructed using the traditional Hulth method, and the therapeutic effect was assessed by the Lequesne MG score and Pain assessment by hot plate test. The pathological alterations of cartilage tissue were observed using hematoxylin and eosin (H&E) staining, Safranin O-fast green and MASSON staining to observe the pathological changes in cartilage tissue, and the efficacy was evaluated according to the principles of Mankin score and Osteoarthritis Research Society International (OARSI) score. Meanwhile, MLT in serum, cyclic adenosine monophosphate (cAMP) in cartilage, and matrix metalloproteinase-3 (MMP-3) in joint fluid were detected by enzyme-linked immunosorbent assay. In addition, the expression of aromatic L-amino acid N-acetyltransferase (AANAT), melatonin receptor 1 (MT1) and 2 (MT2) mRNAs in cartilage was determined by real-time quantitative reverse transcription-polymerase chain reaction, and the levels of proteins related to PKA/CREB signaling pathway were detected by Western blotting. Results Based on the results of Lequesne MG score and Pain assessment by hot plate test experimental data, the treatment group presented significant improvements in knee pain and overall function relative to OA (Osteoarthritis) group. Besides, according to results of histologic staining, Mankin and OARSI scores, articular cartilage degeneration of treatment group remarkably improved. In addition, acupuncture significantly reduced the expression of the inflammatory factor MMP-3 in knee joint fluid and significantly increased the levels of MLT, AANAT, MT1, MT2, cAMP, PKA and CREB. Conclusion By regulating sympathetic excitability, acupuncture may activate the MLT/cAMP/PKA/CREB signaling pathway, decrease inflammatory factor expression and slow down degradation of articular cartilage, resulting in the relief of knee pain.
Collapse
Affiliation(s)
- Chao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| | - Man Yu
- Department of Nephrology and Rheumatology, Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, People’s Republic of China
| | - Longyao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| | - Xin Zhou
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| | - Jinchang Han
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| | - Bifeng Fu
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| | - Hongfei Xue
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| | - Chao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| |
Collapse
|
3
|
Sim YE, Kim CL, Kim DH, Hong JA, Lee IJ, Kwak JY, Kang LJ, Mo JS. Rosmarinic acid promotes cartilage regeneration through Sox9 induction via NF-κB pathway inhibition in mouse osteoarthritis progression. Heliyon 2024; 10:e38936. [PMID: 39444399 PMCID: PMC11497390 DOI: 10.1016/j.heliyon.2024.e38936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Background The natural polyphenolic compound known as Rosmarinic acid (RosA) can be found in various plants. Although its potential health benefits have been extensively studied, its effect on osteoarthritis (OA) progression and cartilage regeneration function still needs to be fully elucidated in OA animal models. This study elucidated the effect of RosA on OA progression and cartilage regeneration. Methods In vitro assessments were conducted using RT-PCR, qRT-PCR, Western blotting, and ELISA to measure the effects of RosA. The molecular mechanisms of RosA were determined by analyzing the translocation of p65 into the nucleus using immunocytochemistry (ICC). Histological analysis of cartilage explant was performed using alcian blue staining and immunohistochemistry (IHC). For in vivo analysis, the destabilization of the medial meniscus (DMM)-induced OA mouse model was utilized to evaluate cartilage destruction through Safranin-O staining. The expression of catabolic and anabolic factors in mice knee joints was quantified by immunohistochemistry. Results The expression of catabolic factors in chondrocytes was significantly impeded by RosA. It also suppressed the NF-κB signaling pathway by decreasing phosphorylation of p65 and reducing degradation of IκB protein. In ex vivo experiments, RosA protected sulfated proteoglycan erosion triggered by IL-1β and suppressed the catabolic factors in cartilage explant. RosA treatment in animal models resulted in preventing cartilage destruction and reducing catabolic factors in the cartilage. RosA was also found to promote the expression of Sox9, Col2a1, and Acan in vitro, ex vivo, and in vivo analyses. Conclusions RosA attenuated the OA progression by suppressing the catabolic factors expression. These effects were facilitated through the suppression of the NF-κB signaling pathway. Additionally, it promotes cartilage regeneration by inducing anabolic factors. Therefore, RosA shows potential as an effective therapeutic agent for treating OA.
Collapse
Affiliation(s)
- Ye Eun Sim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Cho-Long Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Dong Hyun Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Ji-Ae Hong
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, 59338, South Korea
| | - In-Jeong Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
| | - Jong-Young Kwak
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Li-Jung Kang
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jung-Soon Mo
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| |
Collapse
|
4
|
Tripathi D, Gupta T, Pandey P. Exploring Piperine: Unleashing the multifaceted potential of a phytochemical in cancer therapy. Mol Biol Rep 2024; 51:1050. [PMID: 39395120 DOI: 10.1007/s11033-024-09978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Radiotherapy is a cornerstone in the treatment of solid tumors, with extensive Phase III trials confirming its effectiveness. As advancements in treatment technologies and our understanding of tumor resistance mechanisms continue, the role of radiation oncology is set to become even more pivotal. Addressing the global challenge of lethal cancers demands innovative strategies, particularly in minimizing the side effects associated with traditional chemotherapy and ionizing radiation (IR). Recently, there has been growing interest in natural compounds for radioprotection, aiming to prevent tumor development and metastasis. Piperine, a compound found in black and long pepper, has emerged as a promising chemopreventive agent that works effectively without harming normal cells. Mechanistically, piperine modulates key signaling pathways, inhibits cancer cell migration and invasion, and enhances sensitivity to IR. Combining piperine with radiotherapy offers a compelling approach, boosting treatment efficacy while protecting healthy tissues from radiation damage. Piperine's versatile role goes beyond radiosensitization to include radioprotection by inhibiting NF-κB activation, reducing autophagy, and promoting apoptosis in cancer cells. This dual action makes it a promising candidate for personalized cancer care. As research advances, the therapeutic potential of piperine may drive new frontiers in cancer treatment strategies.
Collapse
Affiliation(s)
- Devika Tripathi
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, 209305, India.
| | - Tanya Gupta
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, 209305, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
5
|
Jo HG, Baek CY, Lee J, Hwang Y, Baek E, Song A, Song HS, Lee D. Inhibitory Effects of Reynoutria japonica Houtt. on Pain and Cartilage Breakdown in Osteoarthritis Based on Its Multifaceted Anti-Inflammatory Activity: An In Vivo and In Vitro Approach. Int J Mol Sci 2024; 25:10647. [PMID: 39408977 PMCID: PMC11476456 DOI: 10.3390/ijms251910647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
In the past 30 years, the number of years lived with disability due to osteoarthritis (OA) has doubled, making it an increasing global health burden. To address this issue, interventions that inhibit the progressive pathology driven by age-related low-grade inflammation, the primary mechanism of OA, are being actively pursued. Recent investigations have focused on modulating the age-related low-grade inflammatory pathology of this disease as a therapeutic target. However, no agent has successfully halted the disease's progression or reversed its irreversible course. Reynoutria japonica Houtt. (RJ), a promising East Asian herbal medicine, has been utilized for several diseases due to its potent anti-inflammatory activity. This study aims to determine RJ's capacity to inhibit OA symptoms and associated inflammation, exploring its potential for further development. In vivo and in vitro experiments demonstrated RJ's anti-OA activity and modulation of multifaceted inflammatory targets. RJ significantly inhibited pain, gait deterioration, and cartilage destruction in a monosodium iodoacetate-induced OA rat model, with its analgesic effect further confirmed in an acetic acid-induced writhing model. RJ exhibited consistent anti-inflammatory activity against multiple targets in serum and cartilage of the OA rat model and lipopolysaccharide-induced RAW 264.7 cells. The inhibition of inflammatory cytokines, including interleukin-1β, interleukin-6, matrix metalloproteinase-13, tumor necrosis factor-α, and nitric oxide synthase 2, suggests that RJ's alleviation of OA manifestations relates to its multifaceted anti-inflammatory activity. These results indicate that RJ merits further investigation as a disease-modifying drug candidate targeting OA's inflammatory pathology. To further characterize the pharmacological properties of RJ, future studies with expanded designs are warranted.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
- Naturalis Inc., 6 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Chae Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
| | - Juni Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
| | - Yeseul Hwang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Aejin Song
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13306, Republic of Korea
| | - Ho Sueb Song
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13306, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
| |
Collapse
|
6
|
Jo HG, Baek CY, Hwang Y, Baek E, Park C, Song HS, Lee D. Investigating the Anti-Inflammatory, Analgesic, and Chondroprotective Effects of Gynostemma pentaphyllum (Thunb.) Makino in Osteoarthritis: An In Vitro and In Vivo Study. Int J Mol Sci 2024; 25:9594. [PMID: 39273553 PMCID: PMC11395165 DOI: 10.3390/ijms25179594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA) is an age-related disease characterized by inflammation, pain, articular cartilage damage, synovitis, and irreversible disability. Gynostemma pentaphyllum (Thunb.) Makino (GP), a herbal medicine traditionally used in East Asia for its anti-inflammatory properties, was investigated for its potential to modulate OA pathology and symptoms. This study evaluated GP's efficacy in inhibiting pain, functional decline, and cartilage destruction in monosodium iodoacetate-induced OA and acetic acid-induced writhing models. Additionally, the effects of GP on OA-related inflammatory targets were assessed via mRNA and protein expression in rat knee cartilage and lipopolysaccharide-induced RAW 264.7 cells. The GP group demonstrated significant pain relief, functional improvement, and cartilage protection. Notably, GP inhibited key inflammatory mediators, including interleukin (IL)-1β, IL-6, matrix metalloproteinases (MMP)-3 and MMP-13, cyclooxygenase-2, and prostaglandin E receptor 2, surpassing the effects of active controls. These findings suggest that GP is a promising candidate for disease-modifying OA drugs and warrants further comprehensive studies.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
- Naturalis Inc., 6 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Chae Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Yeseul Hwang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Chanyoon Park
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Ho Sueb Song
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
7
|
Jo HG, Baek CY, Hwang Y, Baek E, Song HS, Lee D. Pain Relief, Functional Recovery, and Chondroprotective Effects of Angelica gigas Nakai in Osteoarthritis Due to Its Anti-Inflammatory Property: An In Vitro and In Vivo Study. Nutrients 2024; 16:2435. [PMID: 39125316 PMCID: PMC11314059 DOI: 10.3390/nu16152435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoarthritis (OA), characterized by chronic pain and joint degradation, is a progressive joint disease primarily induced by age-related systemic inflammation. Angelica gigas Nakai (AG), a medicinal plant widely used in East Asia, exhibits promising results for such conditions. This study aimed to evaluate the potential of AG as a drug candidate for modulating the multifaceted pathology of OA based on its anti-inflammatory properties. We evaluated the efficacy of AG in pain relief, functional improvement, and cartilage erosion delay using monosodium iodoacetate-induced OA rats and acetic acid-induced writhing mice, along with its anti-inflammatory effects on multiple targets in the serum and cartilage of in vivo models and lipopolysaccharide-stimulated RAW 264.7 cells. In vivo experiments demonstrated significant analgesic and chondroprotective effects of AG, along with functional recovery, in model animals compared with the active controls. AG dose-dependently modulated inflammatory OA pathology-related targets, including interleukin-1β, tumor necrosis factor-α, matrix metalloproteinase-13, and cyclooxygenase-2, both in vitro and in vivo. In conclusion, AG could be a potential drug candidate for modulating the multifaceted pathology of OA. Nevertheless, further comprehensive investigations, involving a broader range of compounds, pathologies, and mechanisms, are warranted to validate these findings.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
- Naturalis Inc., 6, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Chae Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
| | - Yeseul Hwang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ho Sueb Song
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.Y.B.)
| |
Collapse
|
8
|
Jo HG, Baek CY, Lee J, Hwang Y, Baek E, Hwang JH, Lee D. Anti-Inflammatory, Analgesic, Functional Improvement, and Chondroprotective Effects of Erigeron breviscapus (Vant.) Hand.-Mazz. Extract in Osteoarthritis: An In Vivo and In Vitro Study. Nutrients 2024; 16:1035. [PMID: 38613068 PMCID: PMC11013172 DOI: 10.3390/nu16071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative bone disease characterized by inflammation as a primary pathology and currently lacks therapeutic interventions to impede its progression. Erigeron breviscapus (Vant.) Hand.-Mazz. (EB) is an east Asian herbal medicine with a long history of use and a wide range of confirmed efficacy against cardiovascular and central nervous system diseases. The purpose of this study is to evaluate whether EB is worthy of further investigation as a treatment for OA based on anti-inflammatory activity. This study aims to assess the potential of EB as a treatment for OA, focusing on its anti-inflammatory properties. Analgesic effects, functional improvements, and inhibition of cartilage destruction induced by EB were evaluated in acetic acid-induced peripheral pain mice and monosodium iodoacetate-induced OA rat models. Additionally, the anti-inflammatory effect of EB was assessed in serum and cartilage tissue in vivo, as well as in lipopolysaccharide-induced RAW 264.7 cells. EB demonstrated a significant alleviation of pain, functional impairment, and cartilage degradation in OA along with a notable inhibition of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, matrix metalloproteinases 13, and nitric oxide synthase 2, both in vitro and in vivo, in a dose-dependent manner compared to the active control. Accordingly, EB merits further exploration as a potential disease-modifying drug for OA, capable of mitigating the multifaceted pathology of osteoarthritis through its anti-inflammatory properties. Nonetheless, additional validation through a broader experimental design is essential to substantiate the findings of this study.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
- Naturalis Inc., 6, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Chae Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
| | - JunI Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
| | - Yeseul Hwang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji Hye Hwang
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
| |
Collapse
|
9
|
Jo HG, Baek CY, Song HS, Lee D. Network Pharmacology and Experimental Verifications to Discover Scutellaria baicalensis Georgi's Effects on Joint Inflammation, Destruction, and Pain in Osteoarthritis. Int J Mol Sci 2024; 25:2127. [PMID: 38396803 PMCID: PMC10889325 DOI: 10.3390/ijms25042127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Osteoarthritis is the most common type of arthritis, characterized by joint pain and a decline in physiological function. Scutellaria baicalensis Georgi (SB) is potentially effective against osteoarthritis because of its wide range of anti-inflammatory pharmacological activities. This study aimed to identify the mode of action of SB against osteoarthritis using network pharmacology prediction and experimental verification. Networks were constructed to key compounds, hub targets, and pathways essential for SB's effectiveness against osteoarthritis. Additionally, in vivo and in vitro tests were performed, including investigations on weight bearing in hind limbs, the acetic acid-induced writhing response, lipopolysaccharide-stimulated RAW264.7 cells, and serum cytokine responses. We identified 15 active compounds and 14 hub targets, supporting the anti-osteoarthritis effects of SB. The Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that fluid shear stress, atherosclerosis, phosphatidylinositol 3-kinase-Akt signaling, and cellular senescence pathways were important. SB showed substantial anti-inflammatory, analgesic, and joint tissue-protective effects against osteoarthritis. Our study shows that SB has the potential value to be further investigated as a candidate material for the treatment of osteoarthritis in the future.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.-Y.B.)
- Naturalis Inc., 6 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Chae-Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.-Y.B.)
| | - Ho Sueb Song
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.-Y.B.)
| |
Collapse
|