1
|
Yang Q, Cai Y, Wang Z, Guo S, Qiu S, Zhang A. Understanding the physiological mechanisms and therapeutic targets of diseases: Lipidomics strategies. Life Sci 2025; 363:123411. [PMID: 39848598 DOI: 10.1016/j.lfs.2025.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
As a pivotal branch of metabolomics, lipidomics studies global changes in lipid metabolism under different physiological and pathological conditions or drug interventions, discovers key lipid markers, and elaborates the associated lipid metabolism network. There are a considerable number of lipids in the host, which act on various functional networks such as metabolism and immune regulation. As an indispensable research method, lipidomics plays a key character in the analysis of lipid composition in organisms, the elaboration of the physiological mechanism of lipids, and the decoding of their character in the occurrence and development of diseases by exploring the character of lipids in the host environmental network. As an essential means of driving lipidomics research, High-throughput and High-resolution mass spectrometry is helpful in exploring disease phenotypic characteristics, diagnosing disease biomarkers, regulating related metabolic pathways, and discovering related active components. In this paper, we discuss the specific role of lipidomics in the analysis of disease diagnosis, prognosis and treatment, which is conducive to the realization of accurate and personalized medicine.
Collapse
Affiliation(s)
- Qiang Yang
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Cai
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China; International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Zhibo Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Sifan Guo
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| | - Aihua Zhang
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China; International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| |
Collapse
|
2
|
Bahari H, Shahraki Jazinaki M, Rahnama I, Aghakhani L, Amini MR, Malekahmadi M. The cardiometabolic benefits of okra-based treatment in prediabetes and diabetes: a systematic review and meta-analysis of randomized controlled trials. Front Nutr 2024; 11:1454286. [PMID: 39726865 PMCID: PMC11670074 DOI: 10.3389/fnut.2024.1454286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Background This systematic review and meta-analysis examine the effects of okra consumption on cardiometabolic risk factors in individuals with prediabetes and diabetes. Okra is a widely consumed vegetable with potential health benefits, and understanding its impact on metabolic parameters in these populations is important. Methods A comprehensive search of the literature was conducted up to May 2024 in PubMed/Medline, Scopus, and Web of Science to find relevant randomized clinical trials (RCTs) by using following keyword: ("okra" OR "okras" OR "abelmoschus esculentus") AND ("intervention" OR "controlled trial" OR "randomized" OR "randomized" OR "randomly" OR "clinical trial" OR "trial" OR "randomized controlled trial" OR "randomized clinical trial" OR "RCT" OR "blinded" OR "placebo" OR "Cross-Over" OR "parallel"). The selected trials were subjected to heterogeneity tests using the I2 statistic. Random effects models were examined based on the heterogeneity tests, and the pooled data were calculated as weighted mean differences (WMD) with a 95% confidence interval (CI). In this meta-analysis, all the analyses were performed by using the STATA version 17 software. Results Of the 1,339 papers, nine eligible RCTs were included in the present meta-analysis. Our findings indicated that okra consumption significantly reduced total cholesterol (TC) levels (WMD: -14.40 mg/dL; (95% CI: -20.94 to -7.86); p < 0.001), low-density lipoprotein (LDL) (WMD: -7.90 mg/dL; (95% CI: -13.30 to -2.48); p = 0.004), fasting blood glucose (FBG) (WMD: -39.58 mg/dL; (95% CI: -61.60 to -17.56); p < 0.001), and hemoglobin A1C (HbA1c) (WMD: -0.46 mg/dL; (95% CI: -0.79 to -0.13); p = 0.005). Overall effect size showed that okra intake failed to change triglycerides (TG), high-density lipoprotein (HDL), Insulin, homeostatic model assessment for insulin resistance (HOMA-IR), systolic blood pressure (SBP), diastolic blood pressure (DBP), body weight, and body Mass Index (BMI) significantly. Conclusion Okra decreased TC, LDL, FBG, and HbA1c levels in the intervention compared to the control group. A dose ≤3,000 mg/day caused a significant decrease in TG, TC, LDL, HbA1c, and a significant increase in HDL. More study is needed to determine the optimum dose and duration of intervention.
Collapse
Affiliation(s)
- Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Iman Rahnama
- Binaloud Institute of Higher Education, Mashhad, Iran
| | - Ladan Aghakhani
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Mokgalaboni K, Phoswa WN, Mokgalabone TT, Dlamini S, Ndhlala AR, Modjadji P, Lebelo SL. Effect of Abelmoschus esculentus L. (Okra) on Dyslipidemia: Systematic Review and Meta-Analysis of Clinical Studies. Int J Mol Sci 2024; 25:10922. [PMID: 39456704 PMCID: PMC11507881 DOI: 10.3390/ijms252010922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The global prevalence of cardiovascular diseases (CVDs), including dyslipidemia and atherosclerosis, is rising. While pharmacological treatments for dyslipidemia and associated CVDs exist, not all individuals can afford them, and those who do often experience adverse side effects. Preclinical studies have indicated the potential benefits of Abelmoschus esculentus and its active phytochemicals in addressing dyslipidemia in rodent models of diabetes. However, there is limited clinical evidence on lipid parameters. Thus, this study aimed to assess the potential impact of Abelmoschus esculentus on dyslipidemia. A literature search was performed on PubMed, Scopus, and Cochrane Library for relevant trials published from inception until 11 August 2024. Data analysis was performed using Jamovi software version 2.4.8 and Review Manager (version 5.4), with effect estimates reported as standardized mean differences (SMDs) and 95% confidence intervals (CI). The evidence from eight studies with nine treatment arms showed that Abelmoschus esculentus reduces total cholesterol (TC), SMD = -0.53 (95% CI: -1.00 to -0.07), p = 0.025), compared to placebo. Additionally, triglyceride (TG) was reduced in Abelmoschus esculentus compared to placebo, SMD = -0.24 (95% CI: -0.46 to -0.02), p = 0.035. Furthermore, low-density lipoprotein (LDL) was also reduced, SMD = -0.35 (95% CI: -0.59 to -0.11), p = 0.004 in Abelmoschus esculentus versus placebo. This remedy substantially increased high-density lipoprotein (HDL), SMD = 0.34 (95% CI: 0.07 to 0.61), p = 0.014). Abelmoschus esculentus substantially improved lipid profile in prediabetes, T2D, obesity, and diabetic nephropathy. While the evidence confirms the potential benefits of Abelmoschus esculentus in reducing dyslipidemia, it is important for future clinical studies to standardize the effective dosage for more reliable results. Therefore, future trials should focus on these markers in well-designed trials with sufficient sample sizes. Furthermore, Abelmoschus esculentus can be supplemented to the diet of the relevant populations to alleviate dyslipidemia.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
| | - Wendy N. Phoswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
| | - Tyson T. Mokgalabone
- Green Biotechnologies Research Centre of Excellence, Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| | - Sanele Dlamini
- School of Chemicals and Physical Sciences, Faculty of Agriculture and Natural Science, University of Mpumalanga, Mbombela 1200, South Africa;
| | - Ashwell R. Ndhlala
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
- Green Biotechnologies Research Centre of Excellence, Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| | - Perpetua Modjadji
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Sogolo L. Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (K.M.); (A.R.N.); (P.M.)
| |
Collapse
|
4
|
Sun W, Li M, Ren H, Chen Y, Zeng W, Tan X, Jia X, Chen S, Wang J, Lai S. Comparative Metabolomic Profiling of L-Histidine and NEFA Treatments in Bovine Mammary Epithelial Cells. Animals (Basel) 2024; 14:1045. [PMID: 38612284 PMCID: PMC11010852 DOI: 10.3390/ani14071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Non-esterified fatty acids (NEFAs) are pivotal in energy metabolism, yet high concentrations can lead to ketosis, a common metabolic disorder in cattle. Our laboratory observed lower levels of L-histidine in cattle suffering from ketosis, indicating a potential interaction between L-histidine and NEFA metabolism. This relationship prompted us to investigate the metabolomic alterations in bovine mammary epithelial cells (BMECs) induced by elevated NEFA levels and to explore L-histidine's potential mitigating effects. Our untargeted metabolomic analysis revealed 893 and 160 metabolite changes in positive and negative models, respectively, with VIP scores greater than 1 and p-values below 0.05. Notable metabolites like 9,10-epoxy-12-octadecenoic acid were upregulated, while 9-Ethylguanine was downregulated. A pathway analysis suggested disruptions in fatty acid and steroid biosynthesis pathways. Furthermore, L-histidine treatment altered 61 metabolites in the positive model and 34 in the negative model, with implications for similar pathways affected by NEFA. Overlaying differential metabolites from both conditions uncovered a potential key mediator, 1-Linoleoylglycerophosphocholine, which was regulated in opposite directions by NEFA and L-histidine. Our study uncovered that both NEFA L- and histidine metabolomics analyses pinpoint similar lipid biosynthesis pathways, with 1-Linoleoylglycerophosphocholine emerging as a potential key metabolite mediating their interaction, a discovery that may offer insights for therapeutic strategies in metabolic diseases.
Collapse
Affiliation(s)
- Wenqiang Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengze Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hanjun Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Zeng
- Sichuan Province Animal Husbandry Science Research Institute (Yangping Breeding Bull Farm), Meishan 620360, China; (W.Z.); (X.T.)
| | - Xiong Tan
- Sichuan Province Animal Husbandry Science Research Institute (Yangping Breeding Bull Farm), Meishan 620360, China; (W.Z.); (X.T.)
| | - Xianbo Jia
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Songjia Lai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|