1
|
Wang Z, Donahue EK, Guo Y, Renteln M, Petzinger GM, Jakowec MW, Holschneider DP. Exercise alters cortico-basal ganglia network metabolic connectivity: a mesoscopic level analysis informed by anatomic parcellation defined in the mouse brain connectome. Brain Struct Funct 2023; 228:1865-1884. [PMID: 37306809 PMCID: PMC10516800 DOI: 10.1007/s00429-023-02659-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
The basal ganglia are important modulators of the cognitive and motor benefits of exercise. However, the neural networks underlying these benefits remain poorly understood. Our study systematically analyzed exercise-associated changes in metabolic connectivity in the cortico-basal ganglia-thalamic network during the performance of a new motor task, with regions-of-interest defined based on mesoscopic domains recently defined in the mouse brain structural connectome. Mice were trained on a motorized treadmill for six weeks or remained sedentary (control), thereafter undergoing [14C]-2-deoxyglucose metabolic brain mapping during wheel walking. Regional cerebral glucose uptake (rCGU) was analyzed in 3-dimensional brains reconstructed from autoradiographic brain sections using statistical parametric mapping. Metabolic connectivity was assessed by calculating inter-regional correlation of rCGU cross-sectionally across subjects within a group. Compared to controls, exercised animals showed broad decreases in rCGU in motor areas, but increases in limbic areas, as well as the visual and association cortices. In addition, exercised animals showed (i) increased positive metabolic connectivity within and between the motor cortex and caudoputamen (CP), (ii) newly emerged negative connectivity of the substantia nigra pars reticulata with the globus pallidus externus, and CP, and (iii) reduced connectivity of the prefrontal cortex (PFC). Increased metabolic connectivity in the motor circuit in the absence of increases in rCGU strongly suggests greater network efficiency, which is also supported by the reduced involvement of PFC-mediated cognitive control during the performance of a new motor task. Our study delineates exercise-associated changes in functional circuitry at the subregional level and provides a framework for understanding the effects of exercise on functions of the cortico-basal ganglia-thalamic network.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
| | - Erin K. Donahue
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
| | - Yumei Guo
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
| | - Michael Renteln
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Giselle M. Petzinger
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Michael W. Jakowec
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Daniel P. Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California USA
| |
Collapse
|
2
|
Zhang S, Hu J, Fan W, Liu B, Wen L, Wang G, Gong M, Yang C, Zhang D. Aberrant Cerebral Activity in Early Postmenopausal Women: A Resting-State Functional Magnetic Resonance Imaging Study. Front Cell Neurosci 2018; 12:454. [PMID: 30534056 PMCID: PMC6275219 DOI: 10.3389/fncel.2018.00454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Early postmenopausal women frequently suffer from cognitive impairments and emotional disorders, such as lack of attention, poor memory, deficits in executive function and depression. However, the underlying mechanisms of these impairments remain unclear. Method: Forty-three early postmenopausal women and forty-four age-matched premenopausal controls underwent serum sex hormone analysis, neuropsychological testing and resting-state functional magnetic resonance imaging (rs-fMRI). Degree centrality (DC) analysis was performed to confirm the peak points of the functionally abnormal brain areas as the centers of the seeds. Subsequently, the functional connectivity (FC) between these abnormal seeds and other voxels across the whole brain was calculated. Finally, the sex hormone levels, neuroimaging indices and neuropsychological data were combined to detect potential correlations. Results: Compared with the premenopausal controls, the early postmenopausal women exhibited significantly higher serum follicle-stimulating hormone (FSH) levels, more severe climacteric and depressive symptoms, worse sleep quality and more extensive cognitive impairments. Concurrently, the neuroimaging results showed elevated DC values in the left amygdala (AMYG.L), reduced DC values in the left middle occipital gyrus (MOG.L) and right middle occipital gyrus (MOG.R). When we used the AMYG.L as the seed point, FC with the left insula (INS.L), bilateral prefrontal cortex (PFC) and right superior frontal gyrus (SFG.R) was increased; these regions are related to depressive states, poor sleep quality and decreased executive function. When bilateral MOG were used as the seed points, FC with left inferior parietal gyrus (IPG.L), this area closely associated with impaired memory, was decreased. Conclusion: These results illuminated the regional and network-level brain dysfunction in early postmenopausal women, which might provide information on the underlying mechanisms of the different cognitive impairments and emotional alterations observed in this group.
Collapse
Affiliation(s)
- Si Zhang
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Junhao Hu
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Weijie Fan
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Bo Liu
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Li Wen
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Guangxian Wang
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Chunyan Yang
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Li L, Zhi M, Hou Z, Zhang Y, Yue Y, Yuan Y. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study. Oncotarget 2018; 8:6283-6294. [PMID: 28009983 PMCID: PMC5351631 DOI: 10.18632/oncotarget.14060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022] Open
Abstract
Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.
Collapse
Affiliation(s)
- Ling Li
- Department of Endocrinology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Mengmeng Zhi
- Department of Endocrinology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yuqun Zhang
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.,Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|