1
|
Nada H, Elkamhawy A, Lee K. Identification of 1H-purine-2,6-dione derivative as a potential SARS-CoV-2 main protease inhibitor: molecular docking, dynamic simulations, and energy calculations. PeerJ 2022; 10:e14120. [PMID: 36225900 PMCID: PMC9549888 DOI: 10.7717/peerj.14120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023] Open
Abstract
The rapid spread of the coronavirus since its first appearance in 2019 has taken the world by surprise, challenging the global economy, and putting pressure on healthcare systems across the world. The introduction of preventive vaccines only managed to slow the rising death rates worldwide, illuminating the pressing need for developing effective antiviral therapeutics. The traditional route of drug discovery has been known to require years which the world does not currently have. In silico approaches in drug design have shown promising results over the last decade, helping to decrease the required time for drug development. One of the vital non-structural proteins that are essential to viral replication and transcription is the SARS-CoV-2 main protease (Mpro). Herein, using a test set of recently identified COVID-19 inhibitors, a pharmacophore was developed to screen 20 million drug-like compounds obtained from a freely accessible Zinc database. The generated hits were ranked using a structure based virtual screening technique (SBVS), and the top hits were subjected to in-depth molecular docking studies and MM-GBSA calculations over SARS-COV-2 Mpro. Finally, the most promising hit, compound (1), and the potent standard (III) were subjected to 100 ns molecular dynamics (MD) simulations and in silico ADME study. The result of the MD analysis as well as the in silico pharmacokinetic study reveal compound 1 to be a promising SARS-Cov-2 MPro inhibitor suitable for further development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea
| |
Collapse
|
2
|
Palaniappan C, Narayanan RC, Sekar K. Mutation-Dependent Refolding of Prion Protein Unveils Amyloidogenic-Related Structural Ramifications: Insights from Molecular Dynamics Simulations. ACS Chem Neurosci 2021; 12:2810-2819. [PMID: 34296847 DOI: 10.1021/acschemneuro.1c00142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main focus of prion structural biology studies is to understand the molecular basis of prion diseases caused by misfolding, and aggregation of the cellular prion protein PrPC remains elusive. Several genetic mutations are linked with human prion diseases and driven by the conformational conversion of PrPC to the toxic PrPSc. The main goal of this study is to gain a better insight into the molecular effect of disease-associated V210I mutation on this process by molecular dynamics simulations. This inherited mutation elicited copious structural changes in the β1-α1-β2 subdomain, including an unfolding of a helix α1 and the elongation of the β-sheet. These unusual structural changes likely appeared to detach the β1-α1-β2 subdomain from the α2-α3 core, an early misfolding event necessary for the conformational conversion of PrPC to PrPSc. Ultimately, the unfolded α1 and its prior β1-α1 loop further engaged with unrestrained conformational dynamics and were widely considered as amyloidogenic-inducing traits. Furthermore, the resulting folding intermediate possesses a highly unstable β1-α1-β2 subdomain, thereby enhancing the aggregation of misfolded PrPC through intermolecular interactions between frequently refolding regions. Briefly, these remarkable changes as seen in the mutant β1-α1-β2 subdomain are consistent with previous experimental results and thus provide a molecular basis of PrPC misfolding associated with the conformational conversion of PrPC to PrPSc.
Collapse
Affiliation(s)
| | - Rahul C. Narayanan
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
3
|
Brocca S, Grandori R, Longhi S, Uversky V. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions. Int J Mol Sci 2020; 21:E9045. [PMID: 33260713 PMCID: PMC7730420 DOI: 10.3390/ijms21239045] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are unable to adopt a unique 3D structure under physiological conditions and thus exist as highly dynamic conformational ensembles. IDPs are ubiquitous and widely spread in the protein realm. In the last decade, compelling experimental evidence has been gathered, pointing to the ability of IDPs and intrinsically disordered regions (IDRs) to undergo liquid-liquid phase separation (LLPS), a phenomenon driving the formation of membrane-less organelles (MLOs). These biological condensates play a critical role in the spatio-temporal organization of the cell, where they exert a multitude of key biological functions, ranging from transcriptional regulation and silencing to control of signal transduction networks. After introducing IDPs and LLPS, we herein survey available data on LLPS by IDPs/IDRs of viral origin and discuss their functional implications. We distinguish LLPS associated with viral replication and trafficking of viral components, from the LLPS-mediated interference of viruses with host cell functions. We discuss emerging evidence on the ability of plant virus proteins to interfere with the regulation of MLOs of the host and propose that bacteriophages can interfere with bacterial LLPS, as well. We conclude by discussing how LLPS could be targeted to treat phase separation-associated diseases, including viral infections.
Collapse
Affiliation(s)
- Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille University and CNRS, 13288 Marseille, France
| | - Vladimir Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33601, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
4
|
Sala D, Cosentino U, Ranaudo A, Greco C, Moro G. Dynamical Behavior and Conformational Selection Mechanism of the Intrinsically Disordered Sic1 Kinase-Inhibitor Domain. Life (Basel) 2020; 10:life10070110. [PMID: 32664566 PMCID: PMC7399826 DOI: 10.3390/life10070110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 01/04/2023] Open
Abstract
Intrinsically Disordered Peptides and Proteins (IDPs) in solution can span a broad range of conformations that often are hard to characterize by both experimental and computational methods. However, obtaining a significant representation of the conformational space is important to understand mechanisms underlying protein functions such as partner recognition. In this work, we investigated the behavior of the Sic1 Kinase-Inhibitor Domain (KID) in solution by Molecular Dynamics (MD) simulations. Our results point out that application of common descriptors of molecular shape such as Solvent Accessible Surface (SAS) area can lead to misleading outcomes. Instead, more appropriate molecular descriptors can be used to define 3D structures. In particular, we exploited Weighted Holistic Invariant Molecular (WHIM) descriptors to get a coarse-grained but accurate definition of the variegated Sic1 KID conformational ensemble. We found that Sic1 is able to form a variable amount of folded structures even in absence of partners. Among them, there were some conformations very close to the structure that Sic1 is supposed to assume in the binding with its physiological complexes. Therefore, our results support the hypothesis that this protein relies on the conformational selection mechanism to recognize the correct molecular partners.
Collapse
Affiliation(s)
- Davide Sala
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy;
| | - Ugo Cosentino
- Dipartimento di Scienze dell’Ambiente e della Terra, Università di Milano-Bicocca, P.zza della Scienza 1, 20126 Milano, Italy; (U.C.); (A.R.)
| | - Anna Ranaudo
- Dipartimento di Scienze dell’Ambiente e della Terra, Università di Milano-Bicocca, P.zza della Scienza 1, 20126 Milano, Italy; (U.C.); (A.R.)
| | - Claudio Greco
- Dipartimento di Scienze dell’Ambiente e della Terra, Università di Milano-Bicocca, P.zza della Scienza 1, 20126 Milano, Italy; (U.C.); (A.R.)
- Correspondence: (C.G.); (G.M.)
| | - Giorgio Moro
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy;
- Correspondence: (C.G.); (G.M.)
| |
Collapse
|
5
|
Han JY, Choi TS, Heo CE, Son MK, Kim HI. Gas-phase conformations of intrinsically disordered proteins and their complexes with ligands: Kinetically trapped states during transfer from solution to the gas phase. MASS SPECTROMETRY REVIEWS 2019; 38:483-500. [PMID: 31021441 DOI: 10.1002/mas.21596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Flexible structures of intrinsically disordered proteins (IDPs) are crucial for versatile functions in living organisms, which involve interaction with diverse partners. Electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) has been widely applied for structural characterization of apo-state and ligand-associated IDPs via two-dimensional separation in the gas phase. Gas-phase IDP structures have been regarded as kinetically trapped states originated from conformational features in solution. However, an implication of the states remains elusive in the structural characterization of IDPs, because it is unclear what structural property of IDPs is preserved. Recent studies have indicated that the conformational features of IDPs in solution are not fully reproduced in the gas phase. Nevertheless, the molecular interactions captured in the gas phase amplify the structural differences between IDP conformers. Therefore, an IDP conformational change that is not observed in solution is observable in the gas-phase structures obtained by ESI-IM-MS. Herein, we have presented up-to-date researches on the key implications of kinetically trapped states in the gas phase with a brief summary of the structural dynamics of IDPs in ESI-IM-MS.
Collapse
Affiliation(s)
- Jong Yoon Han
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Su Choi
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093
| | - Chae Eun Heo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Myung Kook Son
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
6
|
Chandrasekaran P, Santosh Kumar C, Rangachari K, Sekar K. Disassociation of β1-α1-β2 from the α2-α3 domain of prion protein (PrP) is a prerequisite for the conformational conversion of PrPC into PrPSc: Driven by the free energy landscape. Int J Biol Macromol 2019; 136:368-376. [DOI: 10.1016/j.ijbiomac.2019.06.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
|
7
|
Schramm A, Bignon C, Brocca S, Grandori R, Santambrogio C, Longhi S. An arsenal of methods for the experimental characterization of intrinsically disordered proteins - How to choose and combine them? Arch Biochem Biophys 2019; 676:108055. [PMID: 31356778 DOI: 10.1016/j.abb.2019.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
In this review, we detail the most common experimental approaches to assess and characterize protein intrinsic structural disorder, with the notable exception of NMR and EPR spectroscopy, two ideally suited approaches that will be described in depth in two other reviews within this special issue. We discuss the advantages, the limitations, as well as the caveats of the various methods. We also describe less common and more demanding approaches that enable achieving further insights into the conformational properties of IDPs. Finally, we present recent developments that have enabled assessment of structural disorder in living cells, and discuss the currently available methods to model IDPs as conformational ensembles.
Collapse
Affiliation(s)
- Antoine Schramm
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Christophe Bignon
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sonia Longhi
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France.
| |
Collapse
|
8
|
Sriroopreddy R, Raghuraman P, Sudandiradoss C. Structural debilitation of mutation G322D associated with MSH2 and their role in triple negative breast cancer. J Biomol Struct Dyn 2019; 38:771-780. [DOI: 10.1080/07391102.2019.1587512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ramireddy Sriroopreddy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - P. Raghuraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - C. Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
9
|
Santambrogio C, Natalello A, Brocca S, Ponzini E, Grandori R. Conformational Characterization and Classification of Intrinsically Disordered Proteins by Native Mass Spectrometry and Charge‐State Distribution Analysis. Proteomics 2018; 19:e1800060. [DOI: 10.1002/pmic.201800060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/29/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Carlo Santambrogio
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Antonino Natalello
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Stefania Brocca
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Erika Ponzini
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Rita Grandori
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
10
|
Miao Y, Tipakornsaowapak T, Zheng L, Mu Y, Lewellyn E. Phospho-regulation of intrinsically disordered proteins for actin assembly and endocytosis. FEBS J 2018; 285:2762-2784. [PMID: 29722136 DOI: 10.1111/febs.14493] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/04/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
Actin filament assembly contributes to the endocytic pathway pleiotropically, with active roles in clathrin-dependent and clathrin-independent endocytosis as well as subsequent endosomal trafficking. Endocytosis comprises a series of dynamic events, including the initiation of membrane curvature, bud invagination, vesicle abscission and subsequent vesicular transport. The ultimate success of endocytosis requires the coordinated activities of proteins that trigger actin polymerization, recruit actin-binding proteins (ABPs) and organize endocytic proteins (EPs) that promote membrane curvature through molecular crowding or scaffolding mechanisms. A particularly interesting phenomenon is that multiple EPs and ABPs contain a substantial percentage of intrinsically disordered regions (IDRs), which can contribute to protein coacervation and phase separation. In addition, intrinsically disordered proteins (IDPs) frequently contain sites for post-translational modifications (PTMs) such as phosphorylation, and these modifications exhibit a high preference for IDR residues [Groban ES et al. (2006) PLoS Comput Biol 2, e32]. PTMs are implicated in regulating protein function by modulating the protein conformation, protein-protein interactions and the transition between order and disorder states of IDPs. The molecular mechanisms by which IDRs of ABPs and EPs fine-tune actin assembly and endocytosis remain mostly unexplored and elusive. In this review, we analyze protein sequences of budding yeast EPs and ABPs, and discuss the potential underlying mechanisms for regulating endocytosis and actin assembly through the emerging concept of IDR-mediated protein multivalency, coacervation, and phase transition, with an emphasis on the phospho-regulation of IDRs. Finally, we summarize the current understanding of how these mechanisms coordinate actin cytoskeleton assembly and membrane curvature formation during endocytosis in budding yeast.
Collapse
Affiliation(s)
- Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eric Lewellyn
- Department of Biology, Division of Natural Sciences, St Norbert College, De Pere, WI, USA
| |
Collapse
|
11
|
Karunakaran R, Srikumar PS. A molecular dynamics approach to explore the structural characterization of cataract causing mutation R58H on human γD crystallin. Mol Cell Biochem 2018. [PMID: 29532225 DOI: 10.1007/s11010-018-3342-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The crystallins are a family of monomeric proteins present in the mammalian lens and mutations in these proteins cause various forms of cataracts. The aim of our current study is to emphasize the structural characterization of aggregation propensity of mutation R58H on γD crystallin using molecular dynamics (MD) approach. MD result revealed that difference in the sequence level display a wide variation in the backbone atomic position, and thus exhibits rigid conformational dynamics. Changes in the flexibility of residues favoured to increase the number of intra-molecular hydrogen bonds in mutant R58H. Moreover, notable changes in the hydrogen bonding interaction resulted to cause the misfolding of mutant R58H by introducing α-helix. Principal component analysis (PCA) result suggested that mutant R58H showed unusual conformational dynamics along the two principal components when compared to the wild-type (WT)-γD crystallin. In a nutshell, the increased surface hydrophobicity could be the cause of self-aggregation of mutant R58H leading to aculeiform cataract.
Collapse
Affiliation(s)
- Rohini Karunakaran
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah, Malaysia.
| | - P S Srikumar
- Unit of Psychiatry, Faculty of Medicine, AIMST University, Bedong, Malaysia
| |
Collapse
|
12
|
Palaniappan C, Ramalingam R. Deciphering the Molecular Effects of Mutations on ATRX Cause ATRX Syndrome: A Molecular Dynamics Study. J Cell Biochem 2017; 118:3318-3327. [DOI: 10.1002/jcb.25984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 03/08/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Chandrasekaran Palaniappan
- Department of BiotechnologyBioinformatics LabSchool of Biosciences and TechnologyVIT UniversityVellore632014Tamil NaduIndia
| | - Rajasekaran Ramalingam
- Department of BiotechnologyBioinformatics LabSchool of Biosciences and TechnologyVIT UniversityVellore632014Tamil NaduIndia
| |
Collapse
|
13
|
Cossio-Pérez R, Palma J, Pierdominici-Sottile G. Consistent Principal Component Modes from Molecular Dynamics Simulations of Proteins. J Chem Inf Model 2017; 57:826-834. [PMID: 28301154 DOI: 10.1021/acs.jcim.6b00646] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Principal component analysis is a technique widely used for studying the movements of proteins using data collected from molecular dynamics simulations. In spite of its extensive use, the technique has a serious drawback: equivalent simulations do not afford the same PC-modes. In this article, we show that concatenating equivalent trajectories and calculating the PC-modes from the concatenated one significantly enhances the reproducibility of the results. Moreover, the consistency of the modes can be systematically improved by adding more individual trajectories to the concatenated one.
Collapse
Affiliation(s)
- Rodrigo Cossio-Pérez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes , Sáenz Peña 352, B1876BXD Bernal, Argentina
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes , Sáenz Peña 352, B1876BXD Bernal, Argentina
| | - Gustavo Pierdominici-Sottile
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes , Sáenz Peña 352, B1876BXD Bernal, Argentina
| |
Collapse
|
14
|
Natalello A, Santambrogio C, Grandori R. Are Charge-State Distributions a Reliable Tool Describing Molecular Ensembles of Intrinsically Disordered Proteins by Native MS? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:21-28. [PMID: 27730522 DOI: 10.1007/s13361-016-1490-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Native mass spectrometry (MS) has become a central tool of structural proteomics, but its applicability to the peculiar class of intrinsically disordered proteins (IDPs) is still object of debate. IDPs lack an ordered tridimensional structure and are characterized by high conformational plasticity. Since they represent valuable targets for cancer and neurodegeneration research, there is an urgent need of methodological advances for description of the conformational ensembles populated by these proteins in solution. However, structural rearrangements during electrospray-ionization (ESI) or after the transfer to the gas phase could affect data obtained by native ESI-MS. In particular, charge-state distributions (CSDs) are affected by protein conformation inside ESI droplets, while ion mobility (IM) reflects protein conformation in the gas phase. This review focuses on the available evidence relating IDP solution ensembles with CSDs, trying to summarize cases of apparent consistency or discrepancy. The protein-specificity of ionization patterns and their responses to ligands and buffer conditions suggests that CSDs are imprinted to protein structural features also in the case of IDPs. Nevertheless, it seems that these proteins are more easily affected by electrospray conditions, leading in some cases to rearrangements of the conformational ensembles. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
15
|
Yesudhas D, Anwar MA, Panneerselvam S, Durai P, Shah M, Choi S. Structural Mechanism behind Distinct Efficiency of Oct4/Sox2 Proteins in Differentially Spaced DNA Complexes. PLoS One 2016; 11:e0147240. [PMID: 26790000 PMCID: PMC4720428 DOI: 10.1371/journal.pone.0147240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/30/2015] [Indexed: 01/17/2023] Open
Abstract
The octamer-binding transcription factor 4 (Oct4) and sex-determining region Y (SRY)-box 2 (Sox2) proteins induce various transcriptional regulators to maintain cellular pluripotency. Most Oct4/Sox2 complexes have either 0 base pairs (Oct4/Sox20bp) or 3 base pairs (Oct4/Sox23bp) separation between their DNA-binding sites. Results from previous biochemical studies have shown that the complexes separated by 0 base pairs are associated with a higher pluripotency rate than those separated by 3 base pairs. Here, we performed molecular dynamics (MD) simulations and calculations to determine the binding free energy and per-residue free energy for the Oct4/Sox20bp and Oct4/Sox23bp complexes to identify structural differences that contribute to differences in induction rate. Our MD simulation results showed substantial differences in Oct4/Sox2 domain movements, as well as secondary-structure changes in the Oct4 linker region, suggesting a potential reason underlying the distinct efficiencies of these complexes during reprogramming. Moreover, we identified key residues and hydrogen bonds that potentially facilitate protein-protein and protein-DNA interactions, in agreement with previous experimental findings. Consequently, our results confess that differential spacing of the Oct4/Sox2 DNA binding sites can determine the magnitude of transcription of the targeted genes during reprogramming.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Suresh Panneerselvam
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | | | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
- * E-mail:
| |
Collapse
|
16
|
Li J, Santambrogio C, Brocca S, Rossetti G, Carloni P, Grandori R. Conformational effects in protein electrospray-ionization mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:111-22. [PMID: 25952139 DOI: 10.1002/mas.21465] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/14/2015] [Indexed: 05/11/2023]
Abstract
Electrospray-ionization mass spectrometry (ESI-MS) is a key tool of structural biology, complementing the information delivered by conventional biochemical and biophysical methods. Yet, the mechanism behind the conformational effects in protein ESI-MS is an object of debate. Two parameters-solvent-accessible surface area (As) and apparent gas-phase basicity (GBapp)-are thought to play a role in controlling the extent of protein ionization during ESI-MS experiments. This review focuses on recent experimental and theoretical investigations concerning the influence of these parameters on ESI-MS results and the structural information that can be derived. The available evidence supports a unified model for the ionization mechanism of folded and unfolded proteins. These data indicate that charge-state distribution (CSD) analysis can provide valuable structural information on normally folded, as well as disordered structures.
Collapse
Affiliation(s)
- Jinyu Li
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057 Aachen, Germany
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giulia Rossetti
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
17
|
Papaleo E. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity. Front Mol Biosci 2015; 2:28. [PMID: 26075210 PMCID: PMC4445042 DOI: 10.3389/fmolb.2015.00028] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022] Open
Abstract
In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.
Collapse
Affiliation(s)
- Elena Papaleo
- Structural Biology and Nuclear Magnetic Resonance Laboratory, Department of Biology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
18
|
D'Urzo A, Konijnenberg A, Rossetti G, Habchi J, Li J, Carloni P, Sobott F, Longhi S, Grandori R. Molecular basis for structural heterogeneity of an intrinsically disordered protein bound to a partner by combined ESI-IM-MS and modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:472-481. [PMID: 25510932 DOI: 10.1007/s13361-014-1048-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) form biologically active complexes that can retain a high degree of conformational disorder, escaping structural characterization by conventional approaches. An example is offered by the complex between the intrinsically disordered N(TAIL) domain and the phosphoprotein X domain (P(XD)) from measles virus (MeV). Here, distinct conformers of the complex are detected by electrospray ionization-mass spectrometry (ESI-MS) and ion mobility (IM) techniques yielding estimates for the solvent-accessible surface area (SASA) in solution and the average collision cross-section (CCS) in the gas phase. Computational modeling of the complex in solution, based on experimental constraints, provides atomic-resolution structural models featuring different levels of compactness. The resulting models indicate high structural heterogeneity. The intermolecular interactions are predominantly hydrophobic, not only in the ordered core of the complex, but also in the dynamic, disordered regions. Electrostatic interactions become involved in the more compact states. This system represents an illustrative example of a hydrophobic complex that could be directly detected in the gas phase by native mass spectrometry. This work represents the first attempt to modeling the entire N(TAIL) domain bound to P(XD) at atomic resolution.
Collapse
Affiliation(s)
- Annalisa D'Urzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hasan MM, Brocca S, Sacco E, Spinelli M, Papaleo E, Lambrughi M, Alberghina L, Vanoni M. A comparative study of Whi5 and retinoblastoma proteins: from sequence and structure analysis to intracellular networks. Front Physiol 2014; 4:315. [PMID: 24478706 PMCID: PMC3897220 DOI: 10.3389/fphys.2013.00315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/13/2013] [Indexed: 11/18/2022] Open
Abstract
Cell growth and proliferation require a complex series of tight-regulated and well-orchestrated events. Accordingly, proteins governing such events are evolutionary conserved, even among distant organisms. By contrast, it is more singular the case of “core functions” exerted by functional analogous proteins that are not homologous and do not share any kind of structural similarity. This is the case of proteins regulating the G1/S transition in higher eukaryotes–i.e., the retinoblastoma (Rb) tumor suppressor Rb—and budding yeast, i.e., Whi5. The interaction landscape of Rb and Whi5 is quite large, with more than one hundred proteins interacting either genetically or physically with each protein. The Whi5 interactome has been used to construct a concept map of Whi5 function and regulation. Comparison of physical and genetic interactors of Rb and Whi5 allows highlighting a significant core of conserved, common functionalities associated with the interactors indicating that structure and function of the network—rather than individual proteins—are conserved during evolution. A combined bioinformatics and biochemical approach has shown that the whole Whi5 protein is highly disordered, except for a small region containing the protein family signature. The comparison with Whi5 homologs from Saccharomycetales has prompted the hypothesis of a modular organization of structural disorder, with most evolutionary conserved regions alternating with highly variable ones. The finding of a consensus sequence points to the conservation of a specific phosphorylation rhythm along with two disordered sequence motifs, probably acting as phosphorylation-dependent seeds in Whi5 folding/unfolding. Thus, the widely disordered Whi5 appears to act as a hierarchical, “date hub” that has evolutionary assayed an original way of modular organization before being supplanted by the globular, multi-domain structured Rb, more suitable to cover the role of a “party hub”.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- SYSBIO Centre for Systems Biology Milano, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Stefania Brocca
- SYSBIO Centre for Systems Biology Milano, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Elena Sacco
- SYSBIO Centre for Systems Biology Milano, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Michela Spinelli
- SYSBIO Centre for Systems Biology Milano, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Elena Papaleo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Matteo Lambrughi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Lilia Alberghina
- SYSBIO Centre for Systems Biology Milano, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Marco Vanoni
- SYSBIO Centre for Systems Biology Milano, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
20
|
Cino EA, Choy WY, Karttunen M. Conformational Biases of Linear Motifs. J Phys Chem B 2013; 117:15943-57. [DOI: 10.1021/jp407536p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elio A. Cino
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Wing-Yiu Choy
- Department
of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Mikko Karttunen
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
21
|
Testa L, Brocca S, Santambrogio C, D'Urzo A, Habchi J, Longhi S, Uversky VN, Grandori R. Extracting structural information from charge-state distributions of intrinsically disordered proteins by non-denaturing electrospray-ionization mass spectrometry. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e25068. [PMID: 28516012 PMCID: PMC5424789 DOI: 10.4161/idp.25068] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/02/2013] [Accepted: 05/16/2013] [Indexed: 11/23/2022]
Abstract
Intrinsically disordered proteins (IDPs) exert key biological functions but tend to escape identification and characterization due to their high structural dynamics and heterogeneity. The possibility to dissect conformational ensembles by electrospray-ionization mass spectrometry (ESI-MS) offers an attracting possibility to develop a signature for this class of proteins based on their peculiar ionization behavior. This review summarizes available data on charge-state distributions (CSDs) obtained for IDPs by non-denaturing ESI-MS, with reference to globular or chemically denatured proteins. The results illustrate the contributions that direct ESI-MS analysis can give to the identification of new putative IDPs and to their conformational investigation.
Collapse
Affiliation(s)
- Lorenzo Testa
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| | - Annalisa D'Urzo
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| | - Johnny Habchi
- Aix-Marseille Université; CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB); Marseille, France
| | - Sonia Longhi
- Aix-Marseille Université; CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB); Marseille, France
| | - Vladimir N Uversky
- Department of Molecular Medicine; College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Moscow Region, Russia
| | - Rita Grandori
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| |
Collapse
|