1
|
Adekeye TE, Teets EM, Tomak EA, Waterman SL, Sprague KA, White A, Coffin ML, Varga SM, Easterbrooks TE, Shepherd SJ, Austin JD, Krivorotko D, Hupper TE, Kelley JB, Amacher SL, Talbot JC. Fast-twitch myofibrils grow in proportion to Mylpf dosage in the zebrafish embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613721. [PMID: 39345555 PMCID: PMC11429778 DOI: 10.1101/2024.09.18.613721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Muscle cells become stronger by expanding myofibrils, the chains of sarcomeres that produce contraction. Here we investigate how Mylpf (Myosin Light Chain Phosphorylatable Fast) abundance impacts myofibril assembly in fast-twitch muscle. The two zebrafish Mylpf genes (mylpfa and mylpfb) are exclusively expressed in fast-twitch muscle. We show that these cells initially produce six times more mylpfa mRNA and protein than mylpfb. The combined Mylpf protein dosage is necessary for and proportionate to fast-twitch myofibril growth in the embryo. Fast-twitch myofibrils are severely reduced in the mylpfa -/- mutant, leading to loss of high-speed movement; however, by persistent slow movement this mutant swims as far through time as its wild-type sibling. Although the mylpfb -/- mutant has normal myofibrils, myofibril formation fails entirely in the mylpfa -/- ;mylpfb -/- double mutant, indicating that the two genes are collectively essential to myofibril formation. Fast-twitch myofibril width is restored in the mylpfa -/- mutant by transgenic expression of mylpfa-GFP, mylpfb-GFP, and by human MYLPF-GFP to a degree corresponding linearly with GFP brightness. This correlate is inverted by expression of MYLPF alleles that cause Distal Arthrogryposis, which reduce myofibril size in proportion to protein abundance. These effects indicate that Mylpf dosage controls myofibril growth, impacting embryonic development and lifelong health.
Collapse
Affiliation(s)
- Tayo E Adekeye
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Emily M Teets
- Molecular Genetics, The Ohio State University, 43210, USA
| | - Emily A Tomak
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Sadie L Waterman
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Kailee A Sprague
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Angelina White
- School of Biology and Ecology, the University of Maine, 04469, USA
| | | | - Sabrina M Varga
- School of Biology and Ecology, the University of Maine, 04469, USA
| | | | | | - Jared D Austin
- School of Biology and Ecology, the University of Maine, 04469, USA
| | | | - Troy E Hupper
- School of Biology and Ecology, the University of Maine, 04469, USA
| | - Joshua B Kelley
- Molecular and Biomedical Sciences, the University of Maine, 04469, USA
| | - Sharon L Amacher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, 43210, USA
| | - Jared C Talbot
- School of Biology and Ecology, the University of Maine, 04469, USA
| |
Collapse
|
2
|
de Geus MB, Leslie SN, Lam T, Wang W, Kivisakk P, Nairn AC, Arnold SE, Carlyle BC. Mass Spectrometry in Cerebrospinal Fluid Uncovers Association of Glycolysis Biomarkers with Alzheimer's Disease in a Large Clinical Sample. RESEARCH SQUARE 2023:rs.3.rs-3073597. [PMID: 37461556 PMCID: PMC10350182 DOI: 10.21203/rs.3.rs-3073597/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Background Alzheimer's disease (AD) is a complex heterogenous neurodegenerative disorder, characterized by multiple pathophysiologies, including disruptions in brain metabolism. Defining markers for patient stratification across these pathophysiologies is an important step towards personalized treatment of AD. Efficient brain glucose metabolism is essential to sustain neuronal activity, but hypometabolism is consistently observed in AD. The molecular changes underlying these observations remain unclear. Recent studies have indicated dysregulation of several glycolysis markers in AD cerebrospinal fluid and tissue. Methods In this study, unbiased mass spectrometry was used to perform a deep proteomic survey of cerebrospinal fluid (CSF) from a large-scale clinically complex cohort to uncover changes related to impaired glucose metabolism. Results Two glycolytic enzymes, Pyruvate kinase (PKM) and Aldolase A (ALDOA) were found to be specifically upregulated in AD CSF compared to other non-AD groups. Presence of full-length protein of these enzymes in CSF was confirmed through immunoblotting. Levels of tryptic peptides of these enzymes correlated significantly with CSF glucose and CSF lactate in matching CSF samples. Conclusions The results presented here indicate a general dysregulation of glucose metabolism in the brain in AD. We highlight two markers ALDOA and PKM that may act as potential functionally-relevant biomarkers of glucose metabolism dysregulation in AD.
Collapse
|
3
|
Tran MP, Tsutsumi R, Erberich JM, Chen KD, Flores MD, Cooper KL. Evolutionary loss of foot muscle during development with characteristics of atrophy and no evidence of cell death. eLife 2019; 8:50645. [PMID: 31612857 PMCID: PMC6855805 DOI: 10.7554/elife.50645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Many species that run or leap across sparsely vegetated habitats, including horses and deer, evolved the severe reduction or complete loss of foot muscles as skeletal elements elongated and digits were lost, and yet the developmental mechanisms remain unknown. Here, we report the natural loss of foot muscles in the bipedal jerboa, Jaculus jaculus. Although adults have no muscles in their feet, newborn animals have muscles that rapidly disappear soon after birth. We were surprised to find no evidence of apoptotic or necrotic cell death during stages of peak myofiber loss, countering well-supported assumptions of developmental tissue remodeling. We instead see hallmarks of muscle atrophy, including an ordered disassembly of the sarcomere associated with upregulation of the E3 ubiquitin ligases, MuRF1 and Atrogin-1. We propose that the natural loss of muscle, which remodeled foot anatomy during evolution and development, involves cellular mechanisms that are typically associated with disease or injury. Intrinsic muscles are a group of muscles deep inside the hands and feet. They help to control the precise movements required, for example, for a pianist to play their instrument or for certain animals to climb with remarkable agility. Some animals, such as horses and deer, have evolved in such a way that they no longer grasp objects with hands and feet. Where intrinsic muscles were once present in the hands and feet of their ancestors, these animals now have strong ligaments that prevent over-extension of the wrist and ankle joints during hard landings. Given their size, it is difficult to study horses and deer in the laboratory and understand how they lost their intrinsic muscles during evolution. Tran et al. therefore focused on a small rodent called the lesser Egyptian jerboa, which also displays long legs with strong ligaments and no intrinsic muscles. Newborn jerboas have foot muscles that look very much like the intrinsic muscles found in mice, but these muscles disappear within 4 days of birth. A mechanism called programmed cell death is often responsible for specific tissues disappearing during development, but the experiments of Tran et al. revealed that this was not the case in jerboas. Instead, their intrinsic muscles were degraded by processes triggered by genes that disassemble underused muscles. In mice and humans, fasting, nerve injuries, or immobility trigger this type of muscle degradation, but in jerboas these processes appear to be a normal part of development. This unexpected discovery shows that development and disease-like processes are linked, and that more studies of nontraditional research animals may help scientists better understand these connections.
Collapse
Affiliation(s)
- Mai P Tran
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Rio Tsutsumi
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Joel M Erberich
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Kevin D Chen
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Michelle D Flores
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| |
Collapse
|
4
|
Xu B, Magli A, Anugrah Y, Koester SJ, Perlingeiro RCR, Shen W. Nanotopography-responsive myotube alignment and orientation as a sensitive phenotypic biomarker for Duchenne Muscular Dystrophy. Biomaterials 2018; 183:54-66. [PMID: 30149230 PMCID: PMC6239205 DOI: 10.1016/j.biomaterials.2018.08.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal genetic disorder currently having no cure. Here we report that culture substrates patterned with nanogrooves and functionalized with Matrigel (or laminin) present an engineered cell microenvironment to allow myotubes derived from non-diseased, less-affected DMD, and severely-affected DMD human induced pluripotent stem cells (hiPSCs) to exhibit prominent differences in alignment and orientation, providing a sensitive phenotypic biomarker to potentially facilitate DMD drug development and early diagnosis. We discovered that myotubes differentiated from myogenic progenitors derived from non-diseased hiPSCs align nearly perpendicular to nanogrooves, a phenomenon not reported previously. We further found that myotubes derived from hiPSCs of a dystrophin-null DMD patient orient randomly, and those from hiPSCs of a patient carrying partially functional dystrophin align approximately 14° off the alignment direction of non-diseased myotubes. Substrates engineered with micron-scale grooves and/or cell adhesion molecules only interacting with integrins all guide parallel myotube alignment to grooves and lose the ability to distinguish different cell types. Disruption of the interaction between the Dystrophin-Associated-Protein-Complex (DAPC) and laminin by heparin or anti-α-dystroglycan antibody IIH6 disenables myotubes to align perpendicular to nanogrooves, suggesting that this phenotype is controlled by the DAPC-mediated cytoskeleton-extracellular matrix linkage.
Collapse
Affiliation(s)
- Bin Xu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alessandro Magli
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yoska Anugrah
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven J Koester
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rita C R Perlingeiro
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
5
|
Wheelwright M, Win Z, Mikkila JL, Amen KY, Alford PW, Metzger JM. Investigation of human iPSC-derived cardiac myocyte functional maturation by single cell traction force microscopy. PLoS One 2018; 13:e0194909. [PMID: 29617427 PMCID: PMC5884520 DOI: 10.1371/journal.pone.0194909] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/13/2018] [Indexed: 11/24/2022] Open
Abstract
Recent advances have made it possible to readily derive cardiac myocytes from human induced pluripotent stem cells (hiPSC-CMs). HiPSC-CMs represent a valuable new experimental model for studying human cardiac muscle physiology and disease. Many laboratories have devoted substantial effort to examining the functional properties of isolated hiPSC-CMs, but to date, force production has not been adequately characterized. Here, we utilized traction force microscopy (TFM) with micro-patterning cell printing to investigate the maximum force production of isolated single hiPSC-CMs under varied culture and assay conditions. We examined the role of length of differentiation in culture and the effects of varied extracellular calcium concentration in the culture media on the maturation of hiPSC-CMs. Results show that hiPSC-CMs developing in culture for two weeks produced significantly less force than cells cultured from one to three months, with hiPSC-CMs cultured for three months resembling the cell morphology and function of neonatal rat ventricular myocytes in terms of size, dimensions, and force production. Furthermore, hiPSC-CMs cultured long term in conditions of physiologic calcium concentrations were larger and produced more force than hiPSC-CMs cultured in standard media with sub-physiological calcium. We also examined relationships between cell morphology, substrate stiffness and force production. Results showed a significant relationship between cell area and force. Implementing directed modifications of substrate stiffness, by varying stiffness from embryonic-like to adult myocardium-like, hiPSC-CMs produced maximal forces on substrates with a lower modulus and significantly less force when assayed on increasingly stiff adult myocardium-like substrates. Calculated strain energy measurements paralleled these findings. Collectively, these findings further establish single cell TFM as a valuable approach to illuminate the quantitative physiological maturation of force in hiPSC-CMs.
Collapse
Affiliation(s)
- Matthew Wheelwright
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Zaw Win
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jennifer L. Mikkila
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Kamilah Y. Amen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Patrick W. Alford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
6
|
Midgett M, López CS, David L, Maloyan A, Rugonyi S. Increased Hemodynamic Load in Early Embryonic Stages Alters Myofibril and Mitochondrial Organization in the Myocardium. Front Physiol 2017; 8:631. [PMID: 28912723 PMCID: PMC5582297 DOI: 10.3389/fphys.2017.00631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023] Open
Abstract
Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease (CHD). However, the detrimental remodeling processes that relate altered blood flow to cardiac malformation and defects remain unclear. Heart development is a finely orchestrated process with rapid transformations that occur at the tissue, cell, and subcellular levels. Myocardial cells play an essential role in cardiac tissue maturation by aligning in the direction of stretch and increasing the number of contractile units as hemodynamic load increases throughout development. This study elucidates the early effects of altered blood flow on myofibril and mitochondrial configuration in the outflow tract myocardium in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24 (~24 h during tubular heart stages). 3D focused ion beam scanning electron microscopy analysis determined that increased hemodynamic load induced changes in the developing myocardium, characterized by thicker myofibril bundles that were more disbursed in circumferential orientation, and mitochondria that organized in large clusters around the nucleus. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with altered myofibril thin filament assembly and function, and mitochondrial maintenance and organization. Additionally, pathway analysis of the proteomics data identified possible activation of signaling pathways in response to banding, including the renin-angiotensin system (RAS). Imaging and proteomic data combined indicate that myofibril and mitochondrial arrangement in early embryonic stages is a critical developmental process that when disturbed by altered blood flow may contribute to cardiac malformation and defects.
Collapse
Affiliation(s)
- Madeline Midgett
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States
| | - Claudia S López
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States.,Multiscale Microscopy Core, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science UniversityPortland, OR, United States
| | - Larry David
- Proteomics Core, Oregon Health & Science UniversityPortland, OR, United States
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health & Science UniversityPortland, OR, United States
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States
| |
Collapse
|
7
|
|
8
|
Djukic TR, Karthik S, Saveljic I, Djonov V, Filipovic N. Modeling the Behavior of Red Blood Cells within the Caudal Vein Plexus of Zebrafish. Front Physiol 2016; 7:455. [PMID: 27774070 PMCID: PMC5054008 DOI: 10.3389/fphys.2016.00455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/21/2016] [Indexed: 01/17/2023] Open
Abstract
Due to the important biological role of red blood cells (RBCs) in vertebrates, the analysis of reshaping and dynamics of RBCs motion is a critical issue in physiology and biomechanics. In this paper the behavior of RBCs within the immature capillary plexus during embryonic development of zebrafish has been analyzed. Relying on the fact that zebrafish embryos are small and optically transparent, it is possible to image the blood flow. In this way the anatomy of blood vessels is monitored along with the circulation throughout their development. Numerical simulations were performed using a specific numerical model that combines fluid flow simulation, modeling of the interaction of individual RBCs immersed in blood plasma with the surrounding fluid and modeling the deformation of individual cells. The results of numerical simulations are in accordance with the in vivo observed region of interest within the caudal vein plexus of the zebrafish embryo. Good agreement of results demonstrates the capabilities of the developed numerical model to predict and analyze the motion and deformation of RBCs in complex geometries. The proposed model (methodology) will help to elucidate different rheological and hematological related pathologies and finally to design better treatment strategies.
Collapse
Affiliation(s)
- Tijana R Djukic
- Research and Development Center for Bioengineering, BioIRCKragujevac, Serbia; Faculty of Mechanical Engineering, University of KragujevacKragujevac, Serbia
| | - Swapna Karthik
- Topographic and Clinical Anatomy, Institute of Anatomy, University of BernBern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of BernBern, Switzerland
| | - Igor Saveljic
- Research and Development Center for Bioengineering, BioIRCKragujevac, Serbia; Faculty of Mechanical Engineering, University of KragujevacKragujevac, Serbia
| | - Valentin Djonov
- Topographic and Clinical Anatomy, Institute of Anatomy, University of Bern Bern, Switzerland
| | - Nenad Filipovic
- Research and Development Center for Bioengineering, BioIRCKragujevac, Serbia; Faculty of Mechanical Engineering, University of KragujevacKragujevac, Serbia; Harvard School of Public Health, Harvard UniversityBoston, MA, USA
| |
Collapse
|
9
|
Hypertrophy changes 3D shape of hiPSC-cardiomyocytes: Implications for cellular maturation in regenerative medicine. Cell Mol Bioeng 2016; 10:54-62. [PMID: 28163790 DOI: 10.1007/s12195-016-0462-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in the use of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes for heart regeneration and in vitro disease models demand a greater understanding of how these cells grow and mature in 3-dimensional space. In this study, we developed an analysis methodology of single cardiomyocytes plated on 2D surfaces to assess their 3D myofilament volume and its z-height distribution, or shape, upon hypertrophic stimulation via phenylephrine (PE) treatment or long-term culture ("aging"). Cardiomyocytes were fixed and labeled with α-actinin for confocal microscopy imaging to obtain z-stacks for 3D myofilament volume analysis. In primary neonatal rat ventricular myocytes (NRVMs), area increased 72% with PE, while volume increased 31%. In hiPSC-cardiomyocytes, area increased 70% with PE and 4-fold with aging; however, volume increased significantly only with aging by 2.3-fold. Analysis of z-height myofilament volume distribution in hiPSC-cardiomyocytes revealed a shift from a fairly uniform distribution in control cells to a basally located volume in a more flat and spread morphology with PE and even more so with aging, a shape that was akin to all NRVMs analyzed. These results suggest that 2D area is not a sufficient measure of hiPSC-cardiomyocyte growth and maturation, and that changes in 3D volume and its distribution are essential for understanding hiPSC-cardiomyocyte biology for disease modeling and regenerative medicine applications.
Collapse
|
10
|
Furlan S, Mosole S, Murgia M, Nagaraj N, Argenton F, Volpe P, Nori A. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. J Muscle Res Cell Motil 2015; 37:27-39. [PMID: 26585961 DOI: 10.1007/s10974-015-9432-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/07/2015] [Indexed: 12/13/2022]
Abstract
Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located.
Collapse
Affiliation(s)
- Sandra Furlan
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, Viale G. Colombo 3, 35121, Padua, Italy
| | - Simone Mosole
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Francesco Argenton
- Department of Biology, University of Padova, Via U.Bassi 58/B, 35121, Padua, Italy
| | - Pompeo Volpe
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, Viale G. Colombo 3, 35121, Padua, Italy
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy
| | - Alessandra Nori
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy.
| |
Collapse
|
11
|
Yang J, Shih YH, Xu X. Understanding cardiac sarcomere assembly with zebrafish genetics. Anat Rec (Hoboken) 2015; 297:1681-93. [PMID: 25125181 DOI: 10.1002/ar.22975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023]
Abstract
Mutations in sarcomere genes have been found in many inheritable human diseases, including hypertrophic cardiomyopathy. Elucidating the molecular mechanisms of sarcomere assembly shall facilitate understanding of the pathogenesis of sarcomere-based cardiac disease. Recently, biochemical and genomic studies have identified many new genes encoding proteins that localize to the sarcomere. However, their precise functions in sarcomere assembly and sarcomere-based cardiac disease are unknown. Here, we review zebrafish as an emerging vertebrate model for these studies. We summarize the techniques offered by this animal model to manipulate genes of interest, annotate gene expression, and describe the resulting phenotypes. We survey the sarcomere genes that have been investigated in zebrafish and discuss the potential of applying this in vivo model for larger-scale genetic studies.
Collapse
Affiliation(s)
- Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | |
Collapse
|