1
|
Bernhardt I, Nguyen DB, Wesseling MC, Kaestner L. Intracellular Ca 2+ Concentration and Phosphatidylserine Exposure in Healthy Human Erythrocytes in Dependence on in vivo Cell Age. Front Physiol 2020; 10:1629. [PMID: 31998145 PMCID: PMC6965055 DOI: 10.3389/fphys.2019.01629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022] Open
Abstract
After about 120 days of circulation in the blood stream, erythrocytes are cleared by macrophages in the spleen and the liver. The “eat me” signal of this event is thought to be the translocation of phosphatidylserine from the inner to the outer membrane leaflet due to activation of the scramblase, while the flippase is inactivated. Both processes are triggered by an increased intracellular Ca2+ concentration. Although this is not the only mechanism involved in erythrocyte clearance, in this minireview, we focus on the following questions: Is the intracellular-free Ca2+ concentration and hence phosphatidylserine exposure dependent on the erythrocyte age, i.e. is the Ca2+ concentration, progressively raising during the erythrocyte aging in vivo? Can putative differences in intracellular Ca2+ and exposure of phosphatidylserine to the outer membrane leaflet be measured in age separated cell populations? Literature research revealed less than dozen of such publications with vastly contradicting results for the Ca2+ concentrations but consistency for a lack of change for the phosphatidylserine exposure. Additionally, we performed reanalysis of published data resulting in an ostensive illustration of the situation described above. Relating these results to erythrocyte physiology and biochemistry, we can conclude that the variation of the intracellular free Ca2+ concentration is limited with 10 μM as the upper level of the concentration. Furthermore, we propose the hypothesis that variations in measured Ca2+ concentrations may to a large extent depend on the experimental conditions applied but reflect a putatively changed Ca2+ susceptibility of erythrocytes in dependence of in vivo cell age.
Collapse
Affiliation(s)
- Ingolf Bernhardt
- Laboratory of Biophysics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | - Duc Bach Nguyen
- Laboratory of Biophysics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | - Mauro C Wesseling
- Laboratory of Biophysics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | - Lars Kaestner
- Experimental Physics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
2
|
Aizawa K, Kawasaki R, Tashiro Y, Shimonaka Y, Hirata M. Epoetin beta pegol for treatment of anemia ameliorates deterioration of erythrocyte quality associated with chronic kidney disease. BMC Nephrol 2018; 19:19. [PMID: 29374477 PMCID: PMC5787256 DOI: 10.1186/s12882-018-0818-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 01/17/2018] [Indexed: 11/26/2022] Open
Abstract
Background Epoetin beta pegol (continuous erythropoietin receptor activator; C.E.R.A.) is currently widely used for the treatment of anemia associated with chronic kidney disease (CKD). Therapeutic control of anemia is assessed by monitoring haemoglobin (Hb) levels. However, certain qualitative aspects of erythrocytes are also impaired in CKD, including loss of deformability and shortened life-span. Therefore, monitoring Hb alone could potentially fail to reveal pathological changes in erythrocytes. Focusing on erythrocyte quality in CKD may lead to more effective anemia therapy with C.E.R.A. Methods A CKD rat model was induced by uninephrectomy followed by anti-Thy1.1 antibody injection. From 5 weeks after the operation, C.E.R.A. (0.6 μg/kg) or vehicle was administered every 2 weeks. Erythrocyte deformability was quantified with ektacytometry and erythrocyte turnover was estimated by biotin labeling. Intracellular calcium level was assessed by Fluo-3/AM. Results Erythrocyte deformability progressively declined in CKD rats. Furthermore, erythrocyte turnover in the circulation drastically accelerated in CKD rats. With administration of C.E.R.A. at a dose sufficient to adequately control Hb, deterioration of erythrocyte deformability and turnover in CKD rats were significantly improved. Intracellular calcium, which plays a pivotal role in the mediation of erythrocyte quality, was significantly increased in CKD and was normalized by C.E.R.A. treatment. Conclusion C.E.R.A. treatment exerted a favorable effect not only on anemia but also on the improvement of erythrocyte quality. C.E.R.A. administered for the treatment of CKD-associated anemia may confer therapeutic benefits on erythrocytes.
Collapse
Affiliation(s)
- Ken Aizawa
- Product Research Department, Chugai Pharmaceutical Co., Ltd, 200 Kajiwara, Kamakura, 247-8530, Japan.
| | - Ryohei Kawasaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd, 200 Kajiwara, Kamakura, 247-8530, Japan
| | - Yoshihito Tashiro
- Product Research Department, Chugai Pharmaceutical Co., Ltd, 200 Kajiwara, Kamakura, 247-8530, Japan
| | - Yasushi Shimonaka
- Product Research Department, Chugai Pharmaceutical Co., Ltd, 200 Kajiwara, Kamakura, 247-8530, Japan
| | - Michinori Hirata
- Product Research Department, Chugai Pharmaceutical Co., Ltd, 200 Kajiwara, Kamakura, 247-8530, Japan
| |
Collapse
|
3
|
Hertz L, Huisjes R, Llaudet-Planas E, Petkova-Kirova P, Makhro A, Danielczok JG, Egee S, Del Mar Mañú-Pereira M, van Wijk R, Vives Corrons JL, Bogdanova A, Kaestner L. Is Increased Intracellular Calcium in Red Blood Cells a Common Component in the Molecular Mechanism Causing Anemia? Front Physiol 2017; 8:673. [PMID: 28932200 PMCID: PMC5592231 DOI: 10.3389/fphys.2017.00673] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
For many hereditary disorders, although the underlying genetic mutation may be known, the molecular mechanism leading to hemolytic anemia is still unclear and needs further investigation. Previous studies revealed an increased intracellular Ca2+ in red blood cells (RBCs) from patients with sickle cell disease, thalassemia, or Gardos channelopathy. Therefore we analyzed RBCs' Ca2+ content from 35 patients with different types of anemia (16 patients with hereditary spherocytosis, 11 patients with hereditary xerocytosis, 5 patients with enzymopathies, and 3 patients with hemolytic anemia of unknown cause). Intracellular Ca2+ in RBCs was measured by fluorescence microscopy using the fluorescent Ca2+ indicator Fluo-4 and subsequent single cell analysis. We found that in RBCs from patients with hereditary spherocytosis and hereditary xerocytosis the intracellular Ca2+ levels were significantly increased compared to healthy control samples. For enzymopathies and hemolytic anemia of unknown cause the intracellular Ca2+ levels in RBCs were not significantly different. These results lead us to the hypothesis that increased Ca2+ levels in RBCs are a shared component in the mechanism causing an accelerated clearance of RBCs from the blood stream in channelopathies such as hereditary xerocytosis and in diseases involving defects of cytoskeletal components like hereditary spherocytosis. Future drug developments should benefit from targeting Ca2+ entry mediating molecular players leading to better therapies for patients.
Collapse
Affiliation(s)
- Laura Hertz
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland UniversityHomburg, Germany
| | - Rick Huisjes
- Department of Clinical Chemistry and Haematology, University Medical Center UtrechtUtrecht, Netherlands
| | - Esther Llaudet-Planas
- Red Blood Cell Defects and Hematopoietic Disorders Unit, Josep Carreras Leukaemia Research InstituteBarcelona, Spain
| | - Polina Petkova-Kirova
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland UniversityHomburg, Germany
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of ZurichZurich, Switzerland
| | - Jens G Danielczok
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland UniversityHomburg, Germany
| | - Stephane Egee
- Centre National de la Recherche Scientifique, UMR 8227 Comparative Erythrocyte's PhysiologyRoscoff, France.,Université Pierre et Marie Curie, Sorbonne UniversitésRoscoff, France.,Laboratoire d'Excellence GR-ExRoscoff, France
| | - Maria Del Mar Mañú-Pereira
- Red Blood Cell Defects and Hematopoietic Disorders Unit, Josep Carreras Leukaemia Research InstituteBarcelona, Spain
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center UtrechtUtrecht, Netherlands
| | - Joan-Lluis Vives Corrons
- Red Blood Cell Defects and Hematopoietic Disorders Unit, Josep Carreras Leukaemia Research InstituteBarcelona, Spain
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of ZurichZurich, Switzerland
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland UniversityHomburg, Germany.,Experimental Physics, Saarland UniversitySaarbruecken, Germany
| |
Collapse
|
4
|
Fermo E, Bogdanova A, Petkova-Kirova P, Zaninoni A, Marcello AP, Makhro A, Hänggi P, Hertz L, Danielczok J, Vercellati C, Mirra N, Zanella A, Cortelezzi A, Barcellini W, Kaestner L, Bianchi P. 'Gardos Channelopathy': a variant of hereditary Stomatocytosis with complex molecular regulation. Sci Rep 2017; 7:1744. [PMID: 28496185 PMCID: PMC5431847 DOI: 10.1038/s41598-017-01591-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 11/17/2022] Open
Abstract
The Gardos channel is a Ca2+ sensitive, K+ selective channel present in several tissues including RBCs, where it is involved in cell volume regulation. Recently, mutations at two different aminoacid residues in KCNN4 have been reported in patients with hereditary xerocytosis. We identified by whole exome sequencing a new family with two members affected by chronic hemolytic anemia carrying mutation R352H in the KCNN4 gene. No additional mutations in genes encoding for RBCs cytoskeletal, membrane or channel proteins were detected. We performed functional studies on patients’ RBCs to evaluate the effects of R352H mutation on the cellular properties and eventually on the clinical phenotype. Gardos channel hyperactivation was demonstrated in circulating erythrocytes and erythroblasts differentiated ex-vivo from peripheral CD34+ cells. Pathological alterations in the function of multiple ion transport systems were observed, suggesting the presence of compensatory effects ultimately preventing cellular dehydration in patient’s RBCs; moreover, flow cytometry and confocal fluorescence live-cell imaging showed Ca2+ overload in the RBCs of both patients and hypersensitivity of Ca2+ uptake by RBCs to swelling. Altogether these findings suggest that the ‘Gardos channelopathy’ is a complex pathology, to some extent different from the common hereditary xerocytosis.
Collapse
Affiliation(s)
- Elisa Fermo
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Bogdanova
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Polina Petkova-Kirova
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Anna Zaninoni
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Paola Marcello
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Asya Makhro
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Hänggi
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Laura Hertz
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Jens Danielczok
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Cristina Vercellati
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nadia Mirra
- UOC Pronto soccorso, Pediatria ambulatoriale e DH/MAC. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Alberto Zanella
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Agostino Cortelezzi
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Universita' degli Studi di Milano, Milano, Italy
| | - Wilma Barcellini
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbruecken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg/Saar, Germany
| | - Paola Bianchi
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
5
|
Makhro A, Huisjes R, Verhagen LP, Mañú-Pereira MDM, Llaudet-Planas E, Petkova-Kirova P, Wang J, Eichler H, Bogdanova A, van Wijk R, Vives-Corrons JL, Kaestner L. Red Cell Properties after Different Modes of Blood Transportation. Front Physiol 2016; 7:288. [PMID: 27471472 PMCID: PMC4945647 DOI: 10.3389/fphys.2016.00288] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022] Open
Abstract
Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin, and citrate-based CPDA) for two temperatures (4°C and room temperature) were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination), red blood cell (RBC) volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations, and formation of micro vesicles), Ca(2+) handling, RBC metabolism, activity of numerous enzymes, and O2 transport capacity. Our findings indicate that individual sets of parameters may require different shipment settings (anticoagulants, temperature). Most of the parameters except for ion (Na(+), K(+), Ca(2+)) handling and, possibly, reticulocytes counts, tend to favor transportation at 4°C. Whereas plasma and intraerythrocytic Ca(2+) cannot be accurately measured in the presence of chelators such as citrate and EDTA, the majority of Ca(2+)-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using an optimized shipment protocol, the majority of parameters were stable within 24 h, a condition that may not hold for the samples of patients with rare anemias. This implies for as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the patients to the specialized laboratories may be the only option for some groups of patients with highly unstable RBCs.
Collapse
Affiliation(s)
- Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich Zurich, Switzerland
| | - Rick Huisjes
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht Utrecht, Netherlands
| | - Liesbeth P Verhagen
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht Utrecht, Netherlands
| | | | | | - Polina Petkova-Kirova
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland University Homburg/Saar, Germany
| | - Jue Wang
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland University Homburg/Saar, Germany
| | - Hermann Eichler
- Saarland University Hospital, Institute for Clinical Hemostaseology and Transfusion-Medicine Homburg/Saar, Germany
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich Zurich, Switzerland
| | - Richard van Wijk
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht Utrecht, Netherlands
| | | | - Lars Kaestner
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland UniversityHomburg/Saar, Germany; Dynamics of Fluids, Experimental Physics, Saarland UniversitySaarbruecken, Germany
| |
Collapse
|
6
|
Georgatzakou HT, Antonelou MH, Papassideri IS, Kriebardis AG. Red blood cell abnormalities and the pathogenesis of anemia in end-stage renal disease. Proteomics Clin Appl 2016; 10:778-90. [PMID: 26948278 DOI: 10.1002/prca.201500127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/14/2016] [Accepted: 02/29/2016] [Indexed: 12/20/2022]
Abstract
Anemia is the most common hematologic complication in end-stage renal disease (ESRD). It is ascribed to decreased erythropoietin production, shortened red blood cell (RBC) lifespan, and inflammation. Uremic toxins severely affect RBC lifespan; however, the implicated molecular pathways are poorly understood. Moreover, current management of anemia in ESRD is controversial due to the "anemia paradox" phenomenon, which underlines the need for a more individualized approach to therapy. RBCs imprint the adverse effects of uremic, inflammatory, and oxidative stresses in a context of structural and functional deterioration that is associated with RBC removal signaling and morbidity risk. RBCs circulate in hostile plasma by raising elegant homeostatic defenses. Variability in primary defect, co-morbidity, and therapeutic approaches add complexity to the pathophysiological background of the anemic ESRD patient. Several blood components have been suggested as biomarkers of anemia-related morbidity and mortality risk in ESRD. However, a holistic view of blood cell and plasma modifications through integrated omics approaches and high-throughput studies might assist the development of new diagnostic tests and therapies that will target the underlying pathophysiologic processes of ESRD anemia.
Collapse
Affiliation(s)
- Hara T Georgatzakou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Marianna H Antonelou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Issidora S Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Anastasios G Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Greece
| |
Collapse
|
7
|
Flormann D, Kuder E, Lipp P, Wagner C, Kaestner L. Is there a role of C-reactive protein in red blood cell aggregation? Int J Lab Hematol 2014; 37:474-82. [PMID: 25382124 DOI: 10.1111/ijlh.12313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/13/2014] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Numerous clinical studies related the plasma level of C-reactive protein (CRP) to the erythrocyte sedimentation rate (ESR) independent of the kind of disease. The molecular regulation of the process is unknown. METHODS We performed a meta-analysis of 10 previous studies and experimentally probed for a direct action of CRP on red blood cells (RBCs) by different methods including determination of a microscopic aggregation index, Ca(2+) imaging and analysis of sedimentation experiments. RESULTS The meta-analysis revealed a statistically significant correlation (Pearson coefficient of 0.37; P < 0.0001), but we could not find any experimental evidence for a direct CRP-RBC interaction. Instead, we could confirm a correlation between fibrinogen level and ESR. CONCLUSION Therefore, we concluded that CRP and ESR cannot account for nor replace each other as a diagnostic measure. The correlation between CRP level and ESR is most probably caused by fibrinogen, because its increase coincides with elevated CRP levels.
Collapse
Affiliation(s)
- D Flormann
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - E Kuder
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, School of Medicine, Saarland University, Homburg/Saar, Germany
| | - P Lipp
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, School of Medicine, Saarland University, Homburg/Saar, Germany
| | - C Wagner
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - L Kaestner
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, School of Medicine, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
8
|
Kaestner L, Bogdanova A. Regulation of red cell life-span, erythropoiesis, senescence, and clearance. Front Physiol 2014; 5:269. [PMID: 25101005 PMCID: PMC4102833 DOI: 10.3389/fphys.2014.00269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 11/23/2022] Open
Affiliation(s)
- Lars Kaestner
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University Homburg/Saar, Germany
| | - Anna Bogdanova
- Vetsuisse Faculty, and the Zurich Center for Integrative Human Physiology, Institute of Veterinary Physiology, University of Zurich Zurich, Switzerland
| |
Collapse
|