1
|
Shao X, Li N, Liang L, Liu Y, Yan J, Peng Y, Ma P. Diagnostic significance of combined two-dimensional ultrasound and three-dimensional tomographic ultrasound imaging for cleft palate in fetus of 11-13 + 6 weeks: a prospective study. J Matern Fetal Neonatal Med 2025; 38:2463396. [PMID: 39988364 DOI: 10.1080/14767058.2025.2463396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE Clinical screening for cleft palate in fetus currently focuses on weeks 20-24. It has been shown that cleft palate can be detected by ultrasound in first-trimester anatomy scan, but there are no large-scale samples to validate. This study was to confirm the ability of combined two-dimensional(2D)-ultrasound and three-dimensional(3D)-tomographic ultrasound imaging (TUI) to safely detect an fetal cleft palate at 11-13 + 6 weeks via large-scale samples. METHODS A prospective study was designed, involving 6870 pregnant women applying 2D-ultrasound transabdominal sweeps of the fetal face in the median sagittal and coronal views of the retronasal triangle with abnormalities of the palatal line detected, followed by an axial view of the superior alveolar eminence and 3D-TUI evaluation. The endpoints were the results of the fetal facial profile assessment for delivery and induction of labor. The accuracy, sensitivity, and specificity of ultrasound for diagnosing a cleft palate at 11-13 + 6 weeks were analyzed. RESULTS Among 6870 fetus, a total of 43 different cleft palate types were diagnosed by 2D-ultrasound in three-sections at the 11-13 + 6 weeks, and a total of 6827 cases were diagnosed of negative for cleft palate. Of the 43 cases diagnosed of positive for cleft palate, three cases were false positives compared to endpoint results, with a correct positive predictive value of 93.0%. Of the 6827 cases diagnosed of negative for cleft palate, five cases were false negatives compared to endpoint results, with a correct negative predictive value of 99.0%. The sensitivity and specificity of 2D-ultrasound screening for cleft palate were 84.4%, and 99.9%, respectively. The 43 cases received 3D-TUI scans, and the results showed that 37 cases of cleft palate detected, with a positive predictive value of 86.0%, which was lower than that of 2D ultrasonography (93.0%) (p < 0.05). CONCLUSION It may be feasible and accurate to diagnose cleft palate in fetus at 11-13 + 6 weeks by using combined 2D three sections ultrasound and 3D-TUI scans.
Collapse
Affiliation(s)
- Xiaoliu Shao
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| | - Na Li
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| | - Lihua Liang
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| | - Yingfeng Liu
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| | - Juan Yan
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| | - Yanyan Peng
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| | - Pei Ma
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| |
Collapse
|
2
|
Chen Y, Yang R, Chen X, Zhang T, Li C, Ma J. Identification of novel TCOF1 mutations in Treacher Collins syndrome and their functional characterization. Orphanet J Rare Dis 2025; 20:184. [PMID: 40240907 PMCID: PMC12001626 DOI: 10.1186/s13023-025-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Treacher Collins syndrome (TCS) is a congenital disorder primarily caused by the mutation in the Treacle Ribosome Biogenesis Factor 1 (TCOF1) gene. However, the significance of many TCOF1 mutations remains uncertain. RESULTS We report two novel mutations identified in two TCS families and assess their pathogenicity alongside two previously reported mutations. Both novel mutations, c.2115dupG (p.T706DfsTer52) and c.2142+23_2142+52 del (p.A715VfsTer31), result in truncated proteins lacking nuclear location signals (NLSs), which impedes their entry into the nucleus and reduces mRNA expression level. Notably, the mutation c.2142+23_2142+52 del, leading to the retention of a 62 bp intron and disrupting RNA splicing, represents the first documented case of intron retention in TCS patients. Additionally, the previously reported mutation c.136 C> G (p.L46V) hinders protein nuclear location, while mutation c.1719del (p.N574TfsTer22) significantly decreases mRNA levels. CONCLUSIONS Our research expands the spectrum of TCOF1 mutations and provides evidence clarifying their pathogenic nature. These findings are crucial for genetic counseling and prenatal diagnosis for TCS patients.
Collapse
Affiliation(s)
- Ying Chen
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, 200031, People's Republic of China
| | - Run Yang
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, 200031, People's Republic of China
| | - Xin Chen
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, 200031, People's Republic of China
| | - Tianyu Zhang
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Chenlong Li
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, 200031, People's Republic of China.
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, 200031, People's Republic of China.
- Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200032, People's Republic of China.
- Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China.
| |
Collapse
|
3
|
Luo M, Yu X. NBS1 facilitates preribosomal RNA biogenesis. Proc Natl Acad Sci U S A 2025; 122:e2422029122. [PMID: 40067889 PMCID: PMC11929472 DOI: 10.1073/pnas.2422029122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Mutations in the NBS1 gene result in Nijmegen breakage syndrome (NBS), and the gene encodes NBS1 that forms a complex with MRE11 and RAD50 and participates in DNA damage repair. However, the molecular mechanism by which NBS1 mutations cause clinical phenotypes of NBS, such as craniofacial dysmorphism, is still unclear. Here, we show that NBS1 localizes at the ribosomal DNA (rDNA) loci in nucleoli and interacts with ribosomal RNA (rRNA) transcription machinery including RNA polymerase I (Pol I) and TCOF1. Loss of NBS1 impairs Pol I-dependent transcription of pre-rRNA and induces nucleolar stress. In particular, lacking Nbs1 in mouse neural crest cells not only leads to the reduction of ribosome biogenesis but also craniofacial abnormalities during prenatal development. Moreover, the C-terminus of NBS1 is associated with pre-rRNA and a number of pre-rRNA processing factors, which may also facilitate pre-rRNA maturation. Taken together, our study reveals the functions of NBS1 in rRNA biogenesis.
Collapse
Affiliation(s)
- Man Luo
- School of Life Sciences, Fudan University, Shanghai 200438, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310030, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
4
|
Welfer GA, Brady RA, Natchiar SK, Watson ZL, Rundlet EJ, Alejo JL, Singh AP, Mishra NK, Altman RB, Blanchard SC. Impacts of ribosomal RNA sequence variation on gene expression and phenotype. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230379. [PMID: 40045785 PMCID: PMC11883441 DOI: 10.1098/rstb.2023.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
Since the framing of the Central Dogma, it has been speculated that physically distinct ribosomes within cells may influence gene expression and cellular physiology. While heterogeneity in ribosome composition has been reported in bacteria, protozoans, fungi, zebrafish, mice and humans, its functional implications remain actively debated. Here, we review recent evidence demonstrating that expression of conserved variant ribosomal DNA (rDNA) alleles in bacteria, mice and humans renders their actively translating ribosome pool intrinsically heterogeneous at the level of ribosomal RNA (rRNA). In this context, we discuss reports that nutrient limitation-induced stress in Escherichia coli leads to changes in variant rRNA allele expression, programmatically altering transcription and cellular phenotype. We highlight that cells expressing ribosomes from distinct operons exhibit distinct drug sensitivities, which can be recapitulated in vitro and potentially rationalized by subtle perturbations in ribosome structure or in their dynamic properties. Finally, we discuss evidence that differential expression of variant rDNA alleles results in different populations of ribosome subtypes within mammalian tissues. These findings motivate further research into the impacts of rRNA heterogeneities on ribosomal function and predict that strategies targeting distinct ribosome subtypes may hold therapeutic potential.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Griffin A. Welfer
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Ryan A. Brady
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - S. Kundhavai Natchiar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Zoe L. Watson
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Emily J. Rundlet
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712, USA
| | - Jose L. Alejo
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Anand P. Singh
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Nitish K. Mishra
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Roger B. Altman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Scott C. Blanchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| |
Collapse
|
5
|
Jung S, Cheong S, Lee Y, Lee J, Lee J, Kwon MS, Oh YS, Kim T, Ha S, Kim SJ, Jo DH, Ko J, Jeon NL. Integrating Vascular Phenotypic and Proteomic Analysis in an Open Microfluidic Platform. ACS NANO 2024; 18:24909-24928. [PMID: 39208278 PMCID: PMC11394367 DOI: 10.1021/acsnano.4c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This research introduces a vascular phenotypic and proteomic analysis (VPT) platform designed to perform high-throughput experiments on vascular development. The VPT platform utilizes an open-channel configuration that facilitates angiogenesis by precise alignment of endothelial cells, allowing for a 3D morphological examination and protein analysis. We study the effects of antiangiogenic agents─bevacizumab, ramucirumab, cabozantinib, regorafenib, wortmannin, chloroquine, and paclitaxel─on cytoskeletal integrity and angiogenic sprouting, observing an approximately 50% reduction in sprouting at higher drug concentrations. Precise LC-MS/MS analyses reveal global protein expression changes in response to four of these drugs, providing insights into the signaling pathways related to the cell cycle, cytoskeleton, cellular senescence, and angiogenesis. Our findings emphasize the intricate relationship between cytoskeletal alterations and angiogenic responses, underlining the significance of integrating morphological and proteomic data for a comprehensive understanding of angiogenesis. The VPT platform not only advances our understanding of drug impacts on vascular biology but also offers a versatile tool for analyzing proteome and morphological features across various models beyond blood vessels.
Collapse
Affiliation(s)
- Sangmin Jung
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Sunghun Cheong
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Yoonho Lee
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jungseub Lee
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jihye Lee
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Min-Seok Kwon
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
- Department
of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Sun Oh
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Taewan Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjae Ha
- ProvaLabs,
Inc., Seoul 08826, Republic of Korea
| | - Sung Jae Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SOFT
Foundry, Seoul National University, Seoul 08826, Republic of Korea
- Inter-university
Semiconductor Research Center, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Dong Hyun Jo
- Department
of Anatomy and Cell Biology, Seoul National
University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihoon Ko
- Department
of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic
of Korea
| | - Noo Li Jeon
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Institute
of Advanced Machines and Design, Seoul National
University, Seoul 08826, Republic
of Korea
- Qureator, Inc., San
Diego, California 92121, United States
| |
Collapse
|
6
|
Blandon IR, DiBona E, Battenhouse A, Vargas S, Mace C, Seemann F. Analysis of the Skin and Brain Transcriptome of Normally Pigmented and Pseudo-Albino Southern Flounder ( Paralichthys lethostigma) Juveniles to Study the Molecular Mechanisms of Hypopigmentation and Its Implications for Species Survival in the Natural Environment. Int J Mol Sci 2024; 25:7775. [PMID: 39063015 PMCID: PMC11277284 DOI: 10.3390/ijms25147775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Southern flounder skin pigmentation is a critical phenotypic characteristic for this species' survival in the natural environment. Normal pigmentation allows rapid changes of color for concealment to capture prey and UV light protection. In contrast, highly visible hypopigmented pseudo-albinos exhibit a compromised immune system and are vulnerable to predation, sensitive to UV exposure, and likely have poor survival in the wild. Skin and brain tissue samples from normally pigmented and hypopigmented individuals were analyzed with next-generation RNA sequencing. A total of 1,589,613 transcripts were used to identify 952,825 genes to assemble a de novo transcriptome, with 99.43% of genes mapped to the assembly. Differential gene expression and gene enrichment analysis of contrasting tissues and phenotypes revealed that pseudo-albino individuals appeared more susceptible to environmental stress, UV light exposure, hypoxia, and osmotic stress. The pseudo-albinos' restricted immune response showed upregulated genes linked to cancer development, signaling and response, skin tissue formation, regeneration, and healing. The data indicate that a modified skin collagen structure likely affects melanocyte differentiation and distribution, generating the pseudo-albino phenotype. In addition, the comparison of the brain transcriptome revealed changes in myelination and melanocyte stem cell activity, which may indicate modified brain function, reduced melanocyte migration, and impaired vision.
Collapse
Affiliation(s)
- Ivonne R. Blandon
- Coastal Fisheries Division CCA Marine Development Center, Texas Parks and Wildlife Department, 4300 Waldron Rd., Corpus Christi, TX 78418, USA
| | - Elizabeth DiBona
- Department of Life Sciences, College of Science, Texas A and M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Anna Battenhouse
- Center for Biochemical Research Computing Facility, University of Texas at Austin, 100 East 24th, Austin, TX 78712, USA
| | - Sean Vargas
- Genomic Core Facility, University of Texas at San Antonio, UTSA Circle, San Antonio, TX 78249, USA;
| | - Christopher Mace
- Coastal Fisheries Division CCA Marine Development Center, Texas Parks and Wildlife Department, 4300 Waldron Rd., Corpus Christi, TX 78418, USA
| | - Frauke Seemann
- Department of Life Sciences, College of Science, Texas A and M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
7
|
Di Vona C, Barba L, Ferrari R, de la Luna S. Loss of the DYRK1A Protein Kinase Results in the Reduction in Ribosomal Protein Gene Expression, Ribosome Mass and Reduced Translation. Biomolecules 2023; 14:31. [PMID: 38254631 PMCID: PMC10813206 DOI: 10.3390/biom14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Ribosomal proteins (RPs) are evolutionary conserved proteins that are essential for protein translation. RP expression must be tightly regulated to ensure the appropriate assembly of ribosomes and to respond to the growth demands of cells. The elements regulating the transcription of RP genes (RPGs) have been characterized in yeast and Drosophila, yet how cells regulate the production of RPs in mammals is less well understood. Here, we show that a subset of RPG promoters is characterized by the presence of the palindromic TCTCGCGAGA motif and marked by the recruitment of the protein kinase DYRK1A. The presence of DYRK1A at these promoters is associated with the enhanced binding of the TATA-binding protein, TBP, and it is negatively correlated with the binding of the GABP transcription factor, establishing at least two clusters of RPGs that could be coordinately regulated. However, DYRK1A silencing leads to a global reduction in RPGs mRNAs, pointing at DYRK1A activities beyond those dependent on its chromatin association. Significantly, cells in which DYRK1A is depleted have reduced RP levels, fewer ribosomes, reduced global protein synthesis and a smaller size. We therefore propose a novel role for DYRK1A in coordinating the expression of genes encoding RPs, thereby controlling cell growth in mammals.
Collapse
Affiliation(s)
- Chiara Di Vona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Laura Barba
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 23/A, 43124 Parma, Italy;
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
8
|
Jourdeuil K, Neilson KM, Cousin H, Tavares ALP, Majumdar HD, Alfandari D, Moody SA. Zmym4 is required for early cranial gene expression and craniofacial cartilage formation. Front Cell Dev Biol 2023; 11:1274788. [PMID: 37854072 PMCID: PMC10579616 DOI: 10.3389/fcell.2023.1274788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction: The Six1 transcription factor plays important roles in the development of cranial sensory organs, and point mutations underlie craniofacial birth defects. Because Six1's transcriptional activity can be modulated by interacting proteins, we previously screened for candidate interactors and identified zinc-finger MYM-containing protein 4 (Zmym4) by its inclusion of a few domains with a bona fide cofactor, Sine oculis binding protein (Sobp). Although Zmym4 has been implicated in regulating early brain development and certain cancers, its role in craniofacial development has not previously been described. Methods: We used co-immunoprecipitation and luciferase-reporter assays in cultured cells to test interactions between Zmym4 and Six1. We used knock-down and overexpression of Zmym4 in embryos to test for its effects on early ectodermal gene expression, neural crest migration and craniofacial cartilage formation. Results: We found no evidence that Zmym4 physically or transcriptionally interacts with Six1 in cultured cells. Nonetheless, knockdown of endogenous Zmym4 in embryos resulted in altered early cranial gene expression, including those expressed in the neural border, neural plate, neural crest and preplacodal ectoderm. Experimentally increasing Zmym4 levels had minor effects on neural border or neural plate genes, but altered the expression of neural crest and preplacodal genes. At larval stages, genes expressed in the otic vesicle and branchial arches showed reduced expression in Zmym4 morphants. Although we did not detect defects in neural crest migration into the branchial arches, loss of Zmym4 resulted in aberrant morphology of several craniofacial cartilages. Discussion: Although Zmym4 does not appear to function as a Six1 transcriptional cofactor, it plays an important role in regulating the expression of embryonic cranial genes in tissues critical for normal craniofacial development.
Collapse
Affiliation(s)
- Karyn Jourdeuil
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Helene Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Andre L. P. Tavares
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
9
|
Janssen JN, Kalev-Altman R, Shalit T, Sela-Donenfeld D, Monsonego-Ornan E. Differential gene expression in the calvarial and cortical bone of juvenile female mice. Front Endocrinol (Lausanne) 2023; 14:1127536. [PMID: 37378024 PMCID: PMC10291685 DOI: 10.3389/fendo.2023.1127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Both the calvarial and the cortical bones develop through intramembranous ossification, yet they have very different structures and functions. The calvaria enables the rapid while protected growth of the brain, whereas the cortical bone takes part in locomotion. Both types of bones undergo extensive modeling during embryonic and post-natal growth, while bone remodeling is the most dominant process in adults. Their shared formation mechanism and their highly distinct functions raise the fundamental question of how similar or diverse the molecular pathways that act in each bone type are. Methods To answer this question, we aimed to compare the transcriptomes of calvaria and cortices from 21-day old mice by bulk RNA-Seq analysis. Results The results revealed clear differences in expression levels of genes related to bone pathologies, craniosynostosis, mechanical loading and bone-relevant signaling pathways like WNT and IHH, emphasizing the functional differences between these bones. We further discussed the less expected candidate genes and gene sets in the context of bone. Finally, we compared differences between juvenile and mature bone, highlighting commonalities and dissimilarities of gene expression between calvaria and cortices during post-natal bone growth and adult bone remodeling. Discussion Altogether, this study revealed significant differences between the transcriptome of calvaria and cortical bones in juvenile female mice, highlighting the most important pathway mediators for the development and function of two different bone types that originate both through intramembranous ossification.
Collapse
Affiliation(s)
- Jerome Nicolas Janssen
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rotem Kalev-Altman
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Shalit
- The Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Efrat Monsonego-Ornan
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
10
|
Belkevich AE, Pascual HG, Fakhouri AM, Ball DG, Knutson BA. Distinct Interaction Modes for the Eukaryotic RNA Polymerase Alpha-like Subunits. Mol Cell Biol 2023; 43:269-282. [PMID: 37222571 PMCID: PMC10251799 DOI: 10.1080/10985549.2023.2210023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Eukaryotic DNA-dependent RNA polymerases (Pols I-III) encode two distinct alpha-like heterodimers where one is shared between Pols I and III, and the other is unique to Pol II. Human alpha-like subunit mutations are associated with several diseases including Treacher Collins Syndrome (TCS), 4H leukodystrophy, and primary ovarian sufficiency. Yeast is commonly used to model human disease mutations, yet it remains unclear whether the alpha-like subunit interactions are functionally similar between yeast and human homologs. To examine this, we mutated several regions of the yeast and human small alpha-like subunits and used biochemical and genetic assays to establish the regions and residues required for heterodimerization with their corresponding large alpha-like subunits. Here we show that different regions of the small alpha-like subunits serve differential roles in heterodimerization, in a polymerase- and species-specific manner. We found that the small human alpha-like subunits are more sensitive to mutations, including a "humanized" yeast that we used to characterize the molecular consequence of the TCS-causingPOLR1D G52E mutation. These findings help explain why some alpha subunit associated disease mutations have little to no effect when made in their yeast orthologs and offer a better yeast model to assess the molecular basis of POLR1D associated disease mutations.
Collapse
Affiliation(s)
- Alana E. Belkevich
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Haleigh G. Pascual
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Aula M. Fakhouri
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David G. Ball
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Bruce A. Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
11
|
Keer S, Cousin H, Jourdeuil K, Neilson KM, Tavares ALP, Alfandari D, Moody SA. Mcrs1 is required for branchial arch and cranial cartilage development. Dev Biol 2022; 489:62-75. [PMID: 35697116 PMCID: PMC10426812 DOI: 10.1016/j.ydbio.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Mcrs1 is a multifunctional protein that is critical for many cellular processes in a wide range of cell types. Previously, we showed that Mcrs1 binds to the Six1 transcription factor and reduces the ability of the Six1-Eya1 complex to upregulate transcription, and that Mcrs1 loss-of-function leads to the expansion of several neural plate genes, reduction of neural border and pre-placodal ectoderm (PPR) genes, and pleiotropic effects on various neural crest (NC) genes. Because the affected embryonic structures give rise to several of the cranial tissues affected in Branchio-otic/Branchio-oto-renal (BOR) syndrome, herein we tested whether these gene expression changes subsequently alter the development of the proximate precursors of BOR affected structures - the otic vesicles (OV) and branchial arches (BA). We found that Mcrs1 is required for the expression of several OV genes involved in inner ear formation, patterning and otic capsule cartilage formation. Mcrs1 knockdown also reduced the expression domains of many genes expressed in the larval BA, derived from either NC or PPR, except for emx2, which was expanded. Reduced Mcrs1 also diminished the length of the expression domain of tbx1 in BA1 and BA2 and interfered with cranial NC migration from the dorsal neural tube; this subsequently resulted in defects in the morphology of lower jaw cartilages derived from BA1 and BA2, including the infrarostral, Meckel's, and ceratohyal as well as the otic capsule. These results demonstrate that Mcrs1 plays an important role in processes that lead to the formation of craniofacial cartilages and its loss results in phenotypes consistent with reduced Six1 activity associated with BOR.
Collapse
Affiliation(s)
- Stephanie Keer
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Helene Cousin
- Department of Animal Science, University of Massachusetts Amherst, Integrated Science Building, 661 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Karyn Jourdeuil
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Dominique Alfandari
- Department of Animal Science, University of Massachusetts Amherst, Integrated Science Building, 661 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA.
| |
Collapse
|
12
|
Lohraseb I, McCarthy P, Secker G, Marchant C, Wu J, Ali N, Kumar S, Daly RJ, Harvey NL, Kawabe H, Kleifeld O, Wiszniak S, Schwarz Q. Global ubiquitinome profiling identifies NEDD4 as a regulator of Profilin 1 and actin remodelling in neural crest cells. Nat Commun 2022; 13:2018. [PMID: 35440627 PMCID: PMC9018756 DOI: 10.1038/s41467-022-29660-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/24/2022] [Indexed: 01/02/2023] Open
Abstract
The ubiquitin ligase NEDD4 promotes neural crest cell (NCC) survival and stem-cell like properties to regulate craniofacial and peripheral nervous system development. However, how ubiquitination and NEDD4 control NCC development remains unknown. Here we combine quantitative analysis of the proteome, transcriptome and ubiquitinome to identify key developmental signalling pathways that are regulated by NEDD4. We report 276 NEDD4 targets in NCCs and show that loss of NEDD4 leads to a pronounced global reduction in specific ubiquitin lysine linkages. We further show that NEDD4 contributes to the regulation of the NCC actin cytoskeleton by controlling ubiquitination and turnover of Profilin 1 to modulate filamentous actin polymerization. Taken together, our data provide insights into how NEDD4-mediated ubiquitination coordinates key regulatory processes during NCC development. Here the authors combine multi-omics approaches to uncover a role for ubiquitination and the ubiquitin ligase NEDD4 in targeting the actin binding protein Profilin 1 to regulate actin polymerisation in neural crest cells.
Collapse
Affiliation(s)
- Iman Lohraseb
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Peter McCarthy
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Genevieve Secker
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Ceilidh Marchant
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Jianmin Wu
- Kinghorn Cancer Centre & Cancer Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010, Australia
| | - Naveid Ali
- Bone Therapeutics Group, Bone Biology Division, Garvan Institute of Medical Research, Sydney, 2010, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria, 3800, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Goettingen, 37075, Germany.,Department of Pharmacology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Sophie Wiszniak
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia.
| |
Collapse
|
13
|
Schreiner C, Kernl B, Dietmann P, Riegger RJ, Kühl M, Kühl SJ. The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways. Front Cell Dev Biol 2022; 10:777121. [PMID: 35281111 PMCID: PMC8905602 DOI: 10.3389/fcell.2022.777121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/08/2022] [Indexed: 01/24/2023] Open
Abstract
Ribosomal biogenesis is a fundamental process necessary for cell growth and division. Ribosomal protein L5 (Rpl5) is part of the large ribosomal subunit. Mutations in this protein have been associated with the congenital disease Diamond Blackfan anemia (DBA), a so called ribosomopathy. Despite of the ubiquitous need of ribosomes, clinical manifestations of DBA include tissue-specific symptoms, e.g., craniofacial malformations, eye abnormalities, skin pigmentation failure, cardiac defects or liver cirrhosis. Here, we made use of the vertebrate model organism Xenopus laevis and showed a specific expression of rpl5 in the developing anterior tissue correlating with tissues affected in ribosomopathies. Upon Rpl5 knockdown using an antisense-based morpholino oligonucleotide approach, we showed different phenotypes affecting anterior tissue, i.e., defective cranial cartilage, malformed eyes, and microcephaly. Hence, the observed phenotypes in Xenopus laevis resemble the clinical manifestations of DBA. Analyses of the underlying molecular basis revealed that the expression of several marker genes of neural crest, eye, and brain are decreased during induction and differentiation of the respective tissue. Furthermore, Rpl5 knockdown led to decreased cell proliferation and increased cell apoptosis during early embryogenesis. Investigating the molecular mechanisms underlying Rpl5 function revealed a more than additive effect between either loss of function of Rpl5 and loss of function of c-Myc or loss of function of Rpl5 and gain of function of Tp53, suggesting a common signaling pathway of these proteins. The co-injection of the apoptosis blocking molecule Bcl2 resulted in a partial rescue of the eye phenotype, supporting the hypothesis that apoptosis is one main reason for the phenotypes occurring upon Rpl5 knockdown. With this study, we are able to shed more light on the still poorly understood molecular background of ribosomopathies.
Collapse
Affiliation(s)
- Corinna Schreiner
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm, Germany
| | - Bianka Kernl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Ricarda J Riegger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
14
|
Lei K, Lin S, Yuan Q. N6-methyladenosine (m6A) modification of ribosomal RNAs (rRNAs): Critical roles in mRNA translation and diseases. Genes Dis 2021; 10:126-134. [PMID: 37013049 PMCID: PMC10066336 DOI: 10.1016/j.gendis.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
As key components of the ribosome and the most abundant RNA species, the rRNAs are modified during ribosome formation. N6-methyladenosine (m6A) is a conserved RNA modification occurring on different RNA species including rRNAs. Recently, it has been reported that ZCCHC4 and METTL5 are methyltransferases that mediate m6A modification of human 28S and 18S rRNA, respectively. The newly discovered biological functions of the two methyltransferases include regulation of mRNA translation, cell proliferation, cell differentiation, stress response, and other biological processes. Both of them, especially METTL5, have been proved to be associated with a variety of diseases such as intellectual disability, cancer, congenital dysplasia and have potential clinical application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kexin Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Corresponding author. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
15
|
Aqeele G, Shayan P, Ebrahimzade Abkooh E, Mohebali M. Evaluation of curcumin and CM11 peptide alone and in combination against amastigote form of Iranian strain of L. major (MRHO/IR75/ER) in vitro. Exp Parasitol 2021; 229:108151. [PMID: 34419412 DOI: 10.1016/j.exppara.2021.108151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/18/2021] [Accepted: 08/18/2021] [Indexed: 01/29/2023]
Abstract
Curcumin (diferuloylmethane) is the main phytochemical of Curcuma longa Linn, an extract of the rhizome turmeric. For thousands of years, turmeric among other natural products has been used as a dietary spice and as a medicinal plant in Asian countries. The present study reports the leishmanicidal activity of curcumin in different concentrations (10 μM, 20 μM, 40 μM). It is also showing the effect of CM11 peptide (8 μM) alone and in combination with curcumin (10 and 20 μM) as a leishmanicidal drug. The experiments were performed with the amastigote form of Leishmania major (MRHO/IR/75/ER) in vitro and the leishmanicidal activity was analyzed after 12 and 24 h of incubation by Giemsa and DAPI staining. Further investigation was done by using semi-quantitative PCR with new designed common primer pair derived from an 18S rRNA gene belonging to the L. major and mouse, which amplified the above-mentioned gene segments simultaneously with different PCR product size. Our findings showed that curcumin had leishmanicidal activity in a dose and time-dependent manner and its lowest effective dose was at concentrations of 40 μM afetr12 h and 10 μM after 24 h. The IC50 value of curcumin against amastigote forms of L. major was 21.12 μM and 11.77 μM after 12 and 24 h, respectively. Treatment of amastigote form with CM11 (8 μM) alone and in combination with curcumin (10 μM and 20 μM) showed less leishmanicidal activity. Interestingly, CM11 in combination with curcumin (10 μM and 20 μM) had even less leishmanicidal effect compared to curcumin alone in the same concentrations (10 μM and 20 μM). The semi-quantitative PCR analysis confirmed the data achieved by Giemsa and DAPI staining and showed that curcumin reduced the PCR product derived from amastigote form in concentration and time-dependent manner compared to the genome of the host cells.
Collapse
Affiliation(s)
- G Aqeele
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Department of Microbiology, Faculty of Medicine, University of Wasit, Iraq
| | - P Shayan
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute Molecular Biological System Transfer (MBST), Tehran, Iran.
| | - E Ebrahimzade Abkooh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Zhu Q, Tao B, Chen H, Shi H, Huang L, Chen J, Hu M, Lo LJ, Peng J. Rcl1 depletion impairs 18S pre-rRNA processing at the A1-site and up-regulates a cohort of ribosome biogenesis genes in zebrafish. Nucleic Acids Res 2021; 49:5743-5759. [PMID: 34019640 PMCID: PMC8191805 DOI: 10.1093/nar/gkab381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Yeast Rcl1 is a potential endonuclease that mediates pre-RNA cleavage at the A2-site to separate 18S rRNA from 5.8S and 25S rRNAs. However, the biological function of Rcl1 in opisthokonta is poorly defined. Moreover, there is no information regarding the exact positions of 18S pre-rRNA processing in zebrafish. Here, we report that zebrafish pre-rRNA harbours three major cleavage sites in the 5′ETS, namely –477nt (A′-site), –97nt (A0-site) and the 5′ETS and 18S rRNA link (A1-site), as well as two major cleavage regions within the ITS1, namely 208–218nt (site 2) and 20–33nt (site E). We also demonstrate that depletion of zebrafish Rcl1 mainly impairs cleavage at the A1-site. Phenotypically, rcl1–/– mutants exhibit a small liver and exocrine pancreas and die before 15 days post-fertilization. RNA-seq analysis revealed that the most significant event in rcl1–/– mutants is the up-regulated expression of a cohort of genes related to ribosome biogenesis and tRNA production. Our data demonstrate that Rcl1 is essential for 18S rRNA maturation at the A1-site and for digestive organogenesis in zebrafish. Rcl1 deficiency, similar to deficiencies in other ribosome biogenesis factors, might trigger a common mechanism to upregulate the expression of genes responsible for ribosome biogenesis.
Collapse
Affiliation(s)
- Qinfang Zhu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Boxiang Tao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Hong Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Hui Shi
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Ling Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Hu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, China
| |
Collapse
|
17
|
Biallelic splicing variants in the nucleolar 60S assembly factor RBM28 cause the ribosomopathy ANE syndrome. Proc Natl Acad Sci U S A 2021; 118:2017777118. [PMID: 33941690 PMCID: PMC8126767 DOI: 10.1073/pnas.2017777118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alopecia, neurologic defects, and endocrinopathy (ANE) syndrome is a rare ribosomopathy known to be caused by a p.(Leu351Pro) variant in the essential, conserved, nucleolar large ribosomal subunit (60S) assembly factor RBM28. We report the second family of ANE syndrome to date and a female pediatric ANE syndrome patient. The patient presented with alopecia, craniofacial malformations, hypoplastic pituitary, and hair and skin abnormalities. Unlike the previously reported patients with the p.(Leu351Pro) RBM28 variant, this ANE syndrome patient possesses biallelic precursor messenger RNA (pre-mRNA) splicing variants at the 5' splice sites of exon 5 (ΔE5) and exon 8 (ΔE8) of RBM28 (NM_018077.2:c.[541+1_541+2delinsA]; [946G > T]). In silico analyses and minigene splicing experiments in cells indicate that each splice variant specifically causes skipping of its respective mutant exon. Because the ΔE5 variant results in an in-frame 31 amino acid deletion (p.(Asp150_Lys180del)) in RBM28 while the ΔE8 variant leads to a premature stop codon in exon 9, we predicted that the ΔE5 variant would produce partially functional RBM28 but the ΔE8 variant would not produce functional protein. Using a yeast model, we demonstrate that the ΔE5 variant does indeed lead to reduced overall growth and large subunit ribosomal RNA (rRNA) production and pre-rRNA processing. In contrast, the ΔE8 variant is comparably null, implying that the partially functional ΔE5 RBM28 protein enables survival but precludes correct development. This discovery further defines the underlying molecular pathology of ANE syndrome to include genetic variants that cause aberrant splicing in RBM28 pre-mRNA and highlights the centrality of nucleolar processes in human genetic disease.
Collapse
|
18
|
Hutchins EJ, Piacentino ML, Bronner ME. Transcriptomic Identification of Draxin-Responsive Targets During Cranial Neural Crest EMT. Front Physiol 2021; 12:624037. [PMID: 33613313 PMCID: PMC7886793 DOI: 10.3389/fphys.2021.624037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 01/09/2023] Open
Abstract
Canonical Wnt signaling plays an essential role in proper craniofacial morphogenesis, at least partially due to regulation of various aspects of cranial neural crest development. In an effort to gain insight into the etiology of craniofacial abnormalities resulting from Wnt signaling and/or cranial neural crest dysfunction, we sought to identify Wnt-responsive targets during chick cranial neural crest development. To this end, we leveraged overexpression of a canonical Wnt antagonist, Draxin, in conjunction with RNA-sequencing of cranial neural crest cells that have just activated their epithelial-mesenchymal transition (EMT) program. Through differential expression analysis, gene list functional annotation, hybridization chain reaction (HCR), and quantitative reverse transcription polymerase chain reaction (RT-qPCR), we validated a novel downstream target of canonical Wnt signaling in cranial neural crest - RHOB - and identified possible signaling pathway crosstalk underlying cranial neural crest migration. The results reveal novel putative targets of canonical Wnt signaling during cranial neural crest EMT and highlight important intersections across signaling pathways involved in craniofacial development.
Collapse
Affiliation(s)
| | | | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
19
|
Ide S, Imai R, Ochi H, Maeshima K. Transcriptional suppression of ribosomal DNA with phase separation. SCIENCE ADVANCES 2020; 6:6/42/eabb5953. [PMID: 33055158 PMCID: PMC7556839 DOI: 10.1126/sciadv.abb5953] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/25/2020] [Indexed: 05/21/2023]
Abstract
The nucleolus is a nuclear body with multiphase liquid droplets for ribosomal RNA (rRNA) transcription. How rRNA transcription is regulated in the droplets remains unclear. Here, using single-molecule tracking of RNA polymerase I (Pol I) and chromatin-bound upstream binding factor (UBF), we reveal suppression of transcription with phase separation. For transcription, active Pol I formed small clusters/condensates that constrained rDNA chromatin in the nucleolus fibrillar center (FC). Treatment with a transcription inhibitor induced Pol I to dissociate from rDNA chromatin and to move like a liquid within the nucleolar cap that transformed from the FC. Expression of a Pol I mutant associated with a craniofacial disorder inhibited transcription by competing with wild-type Pol I clusters and transforming the FC into the nucleolar cap. The cap droplet excluded an initiation factor, ensuring robust silencing. Our findings suggest a mechanism of rRNA transcription suppression via phase separation of intranucleolar molecules governed by Pol I.
Collapse
Affiliation(s)
- Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), Shizuoka 411-8540, Japan
| | - Ryosuke Imai
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), Shizuoka 411-8540, Japan
| | - Hiroko Ochi
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), Shizuoka 411-8540, Japan
| |
Collapse
|
20
|
Farley-Barnes KI, Deniz E, Overton MM, Khokha MK, Baserga SJ. Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development. PLoS Genet 2020; 16:e1008967. [PMID: 32813698 PMCID: PMC7437866 DOI: 10.1371/journal.pgen.1008967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of ribosome production can lead to a number of developmental disorders called ribosomopathies. Despite the ubiquitous requirement for these cellular machines used in protein synthesis, ribosomopathies manifest in a tissue-specific manner, with many affecting the development of the face. Here we reveal yet another connection between craniofacial development and making ribosomes through the protein Paired Box 9 (PAX9). PAX9 functions as an RNA Polymerase II transcription factor to regulate the expression of proteins required for craniofacial and tooth development in humans. We now expand this function of PAX9 by demonstrating that PAX9 acts outside of the cell nucleolus to regulate the levels of proteins critical for building the small subunit of the ribosome. This function of PAX9 is conserved to the organism Xenopus tropicalis, an established model for human ribosomopathies. Depletion of pax9 leads to craniofacial defects due to abnormalities in neural crest development, a result consistent with that found for depletion of other ribosome biogenesis factors. This work highlights an unexpected layer of how the making of ribosomes is regulated in human cells and during embryonic development.
Collapse
Affiliation(s)
- Katherine I. Farley-Barnes
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maya M. Overton
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mustafa K. Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
21
|
Müller JS, Burns DT, Griffin H, Wells GR, Zendah RA, Munro B, Schneider C, Horvath R. RNA exosome mutations in pontocerebellar hypoplasia alter ribosome biogenesis and p53 levels. Life Sci Alliance 2020; 3:3/8/e202000678. [PMID: 32527837 PMCID: PMC7295610 DOI: 10.26508/lsa.202000678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
The RNA exosome is a ubiquitously expressed complex of nine core proteins (EXOSC1-9) and associated nucleases responsible for RNA processing and degradation. Mutations in EXOSC3, EXOSC8, EXOSC9, and the exosome cofactor RBM7 cause pontocerebellar hypoplasia and motor neuronopathy. We investigated the consequences of exosome mutations on RNA metabolism and cellular survival in zebrafish and human cell models. We observed that levels of mRNAs encoding p53 and ribosome biogenesis factors are increased in zebrafish lines with homozygous mutations of exosc8 or exosc9, respectively. Consistent with higher p53 levels, mutant zebrafish have a reduced head size, smaller brain, and cerebellum caused by an increased number of apoptotic cells during development. Down-regulation of EXOSC8 and EXOSC9 in human cells leads to p53 protein stabilisation and G2/M cell cycle arrest. Increased p53 transcript levels were also observed in muscle samples from patients with EXOSC9 mutations. Our work provides explanation for the pathogenesis of exosome-related disorders and highlights the link between exosome function, ribosome biogenesis, and p53-dependent signalling. We suggest that exosome-related disorders could be classified as ribosomopathies.
Collapse
Affiliation(s)
- Juliane S Müller
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - David T Burns
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Griffin
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Graeme R Wells
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Romance A Zendah
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Benjamin Munro
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK .,Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
22
|
Varum S, Baggiolini A, Zurkirchen L, Atak ZK, Cantù C, Marzorati E, Bossart R, Wouters J, Häusel J, Tuncer E, Zingg D, Veen D, John N, Balz M, Levesque MP, Basler K, Aerts S, Zamboni N, Dummer R, Sommer L. Yin Yang 1 Orchestrates a Metabolic Program Required for Both Neural Crest Development and Melanoma Formation. Cell Stem Cell 2020; 24:637-653.e9. [PMID: 30951662 DOI: 10.1016/j.stem.2019.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/29/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023]
Abstract
Increasing evidence suggests that cancer cells highjack developmental programs for disease initiation and progression. Melanoma arises from melanocytes that originate during development from neural crest stem cells (NCSCs). Here, we identified the transcription factor Yin Yang 1 (Yy1) as an NCSCs regulator. Conditional deletion of Yy1 in NCSCs resulted in stage-dependent hypoplasia of all major neural crest derivatives due to decreased proliferation and increased cell death. Moreover, conditional ablation of one Yy1 allele in a melanoma mouse model prevented tumorigenesis, indicating a particular susceptibility of melanoma cells to reduced Yy1 levels. Combined RNA sequencing (RNA-seq), chromatin immunoprecipitation (ChIP)-seq, and untargeted metabolomics demonstrated that YY1 governs multiple metabolic pathways and protein synthesis in both NCSCs and melanoma. In addition to directly regulating a metabolic gene set, YY1 can act upstream of MITF/c-MYC as part of a gene regulatory network controlling metabolism. Thus, both NCSC development and melanoma formation depend on an intricate YY1-controlled metabolic program.
Collapse
Affiliation(s)
- Sandra Varum
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | | | - Luis Zurkirchen
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Zeynep Kalender Atak
- VIB Center for Brain & Disease Research, Laboratory of Computational Biology, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Elisa Marzorati
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Raphaël Bossart
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Jasper Wouters
- VIB Center for Brain & Disease Research, Laboratory of Computational Biology, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Jessica Häusel
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Eylül Tuncer
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Zingg
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Dominiek Veen
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Nessy John
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Marcel Balz
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich Hospital, 8091 Zurich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Stein Aerts
- VIB Center for Brain & Disease Research, Laboratory of Computational Biology, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, 8091 Zurich, Switzerland
| | - Lukas Sommer
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
23
|
Li M, Shin J, Risgaard RD, Parries MJ, Wang J, Chasman D, Liu S, Roy S, Bhattacharyya A, Zhao X. Identification of FMR1-regulated molecular networks in human neurodevelopment. Genome Res 2020; 30:361-374. [PMID: 32179589 PMCID: PMC7111522 DOI: 10.1101/gr.251405.119] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
RNA-binding proteins (RNA-BPs) play critical roles in development and disease to regulate gene expression. However, genome-wide identification of their targets in primary human cells has been challenging. Here, we applied a modified CLIP-seq strategy to identify genome-wide targets of the FMRP translational regulator 1 (FMR1), a brain-enriched RNA-BP, whose deficiency leads to Fragile X Syndrome (FXS), the most prevalent inherited intellectual disability. We identified FMR1 targets in human dorsal and ventral forebrain neural progenitors and excitatory and inhibitory neurons differentiated from human pluripotent stem cells. In parallel, we measured the transcriptomes of the same four cell types upon FMR1 gene deletion. We discovered that FMR1 preferentially binds long transcripts in human neural cells. FMR1 targets include genes unique to human neural cells and associated with clinical phenotypes of FXS and autism. Integrative network analysis using graph diffusion and multitask clustering of FMR1 CLIP-seq and transcriptional targets reveals critical pathways regulated by FMR1 in human neural development. Our results demonstrate that FMR1 regulates a common set of targets among different neural cell types but also operates in a cell type-specific manner targeting distinct sets of genes in human excitatory and inhibitory neural progenitors and neurons. By defining molecular subnetworks and validating specific high-priority genes, we identify novel components of the FMR1 regulation program. Our results provide new insights into gene regulation by a critical neuronal RNA-BP in human neurodevelopment.
Collapse
Affiliation(s)
- Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Junha Shin
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Ryan D Risgaard
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Molly J Parries
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Jianyi Wang
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Deborah Chasman
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
24
|
Yamada T, Takechi M, Yokoyama N, Hiraoka Y, Ishikubo H, Usami T, Furutera T, Taga Y, Hirate Y, Kanai-Azuma M, Yoda T, Ogawa-Goto K, Iseki S. Heterozygous mutation of the splicing factor Sf3b4 affects development of the axial skeleton and forebrain in mouse. Dev Dyn 2020; 249:622-635. [PMID: 31900962 DOI: 10.1002/dvdy.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Splicing factor 3B subunit 4 (SF3B4) is a causative gene of an acrofacial dysostosis, Nager syndrome. Although in vitro analyses of SF3B4 have proposed multiple noncanonical functions unrelated to splicing, less information is available based on in vivo studies using model animals. RESULTS We performed expression and functional analyses of Sf3b4 in mice. The mouse Sf3b4 transcripts were found from two-cell stage, and were ubiquitously present during embryogenesis with high expression levels in several tissues such as forming craniofacial bones and brain. In contrast, expression of a pseudogene-like sequence of mouse Sf3b4 (Sf3b4_ps) found by in silico survey was not detected up to embryonic day 10. We generated a Sf3b4 knockout mouse using CRISPR-Cas9 system. The homozygous mutant mouse of Sf3b4 was embryonic lethal. The heterozygous mutant of Sf3b4 mouse (Sf3b4+/- ) exhibited smaller body size compared to the wild-type from postnatal to adult period, as well as homeotic posteriorization of the vertebral morphology and flattened calvaria. The flattened calvaria appears to be attributable to mild microcephaly due to a lower cell proliferation rate in the forebrain. CONCLUSIONS Our study suggests that Sf3b4 controls anterior-posterior patterning of the axial skeleton and guarantees cell proliferation for forebrain development in mice.
Collapse
Affiliation(s)
- Takahiko Yamada
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masaki Takechi
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Norisuke Yokoyama
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Hiraoka
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Harumi Ishikubo
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takako Usami
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshiko Furutera
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Yoshikazu Hirate
- Department of Experimental Animal Model for Human Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Yoda
- Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
25
|
Al-Shaer AE, Flentke GR, Berres ME, Garic A, Smith SM. Exon level machine learning analyses elucidate novel candidate miRNA targets in an avian model of fetal alcohol spectrum disorder. PLoS Comput Biol 2019; 15:e1006937. [PMID: 30973878 PMCID: PMC6478348 DOI: 10.1371/journal.pcbi.1006937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/23/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Gestational alcohol exposure causes fetal alcohol spectrum disorder (FASD) and is a prominent cause of neurodevelopmental disability. Whole transcriptome sequencing (RNA-Seq) offer insights into mechanisms underlying FASD, but gene-level analysis provides limited information regarding complex transcriptional processes such as alternative splicing and non-coding RNAs. Moreover, traditional analytical approaches that use multiple hypothesis testing with a false discovery rate adjustment prioritize genes based on an adjusted p-value, which is not always biologically relevant. We address these limitations with a novel approach and implemented an unsupervised machine learning model, which we applied to an exon-level analysis to reduce data complexity to the most likely functionally relevant exons, without loss of novel information. This was performed on an RNA-Seq paired-end dataset derived from alcohol-exposed neural fold-stage chick crania, wherein alcohol causes facial deficits recapitulating those of FASD. A principal component analysis along with k-means clustering was utilized to extract exons that deviated from baseline expression. This identified 6857 differentially expressed exons representing 1251 geneIDs; 391 of these genes were identified in a prior gene-level analysis of this dataset. It also identified exons encoding 23 microRNAs (miRNAs) having significantly differential expression profiles in response to alcohol. We developed an RDAVID pipeline to identify KEGG pathways represented by these exons, and separately identified predicted KEGG pathways targeted by these miRNAs. Several of these (ribosome biogenesis, oxidative phosphorylation) were identified in our prior gene-level analysis. Other pathways are crucial to facial morphogenesis and represent both novel (focal adhesion, FoxO signaling, insulin signaling) and known (Wnt signaling) alcohol targets. Importantly, there was substantial overlap between the exomes themselves and the predicted miRNA targets, suggesting these miRNAs contribute to the gene-level expression changes. Our novel application of unsupervised machine learning in conjunction with statistical analyses facilitated the discovery of signaling pathways and miRNAs that inform mechanisms underlying FASD.
Collapse
Affiliation(s)
- Abrar E. Al-Shaer
- Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - George R. Flentke
- Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Mark E. Berres
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ana Garic
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan M. Smith
- Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| |
Collapse
|
26
|
Gayraud-Morel B, Le Bouteiller M, Commere PH, Cohen-Tannoudji M, Tajbakhsh S. Notchless defines a stage-specific requirement for ribosome biogenesis during lineage progression in adult skeletal myogenesis. Development 2018; 145:145/23/dev162636. [PMID: 30478226 DOI: 10.1242/dev.162636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 10/02/2018] [Indexed: 11/20/2022]
Abstract
Cell fate decisions occur through the action of multiple factors, including signalling molecules and transcription factors. Recently, the regulation of translation has emerged as an important step for modulating cellular function and fate, as exemplified by ribosomes that play distinct roles in regulating cell behaviour. Notchless (Nle) is a conserved nuclear protein that is involved in a crucial step in ribosome biogenesis, and is required for the maintenance of adult haematopoietic and intestinal stem/progenitor cells. Here, we show that activated skeletal muscle satellite cells in conditional Nle mutant mice are arrested in proliferation; however, deletion of Nle in myofibres does not impair myogenesis. Furthermore, conditional deletion of Nle in satellite cells during homeostasis did not impact on their fate for up to 3 months. In contrast, loss of Nle function in primary myogenic cells blocked proliferation because of major defects in ribosome formation. Taken together, we show that muscle stem cells undergo a stage-specific regulation of ribosome biogenesis, thereby underscoring the importance of differential modulation of mRNA translation for controlling cell fate decisions.
Collapse
Affiliation(s)
- Barbara Gayraud-Morel
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.,CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Marie Le Bouteiller
- CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.,Early Mammalian Development and Stem Cell Biology, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Pierre-Henri Commere
- Plateforme de Cytometrie, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Michel Cohen-Tannoudji
- CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.,Early Mammalian Development and Stem Cell Biology, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France .,CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
27
|
Chen J, Tan X, Wang Z, Liu Y, Zhou J, Rong X, Lu L, Li Y. The ribosome biogenesis protein Esf1 is essential for pharyngeal cartilage formation in zebrafish. FEBS J 2018; 285:3464-3484. [DOI: 10.1111/febs.14622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 06/10/2018] [Accepted: 08/01/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Jian‐Yang Chen
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Xungang Tan
- CAS Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences Qingdao China
| | - Zheng‐Hua Wang
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
- CAS Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences Qingdao China
| | - Yun‐Zhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Jian‐Feng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Xiao‐Zhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| |
Collapse
|
28
|
Walker-Kopp N, Jackobel AJ, Pannafino GN, Morocho PA, Xu X, Knutson BA. Treacher Collins syndrome mutations in Saccharomyces cerevisiae destabilize RNA polymerase I and III complex integrity. Hum Mol Genet 2018; 26:4290-4300. [PMID: 28973381 DOI: 10.1093/hmg/ddx317] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/08/2017] [Indexed: 01/16/2023] Open
Abstract
Treacher Collins syndrome (TCS) is a craniofacial disorder that is characterized by the malformation of the facial bones. Mutations in three genes (TCOF1, POLR1C and POLR1D) involved in RNA polymerase I (Pol I) transcription account for more than 90% of disease cases. Two of these TCS-associated genes, POLR1C and POLR1D, encode for essential Pol I/III subunits that form a heterodimer necessary for Pol I/III assembly, and many TCS mutations lie along their evolutionarily conserved dimerization interface. Here we elucidate the molecular basis of TCS mutations in Saccharomyces cerevisiae, and present a new model for how TCS mutations may disrupt Pol I and III complex integrity.
Collapse
Affiliation(s)
- Nancy Walker-Kopp
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ashleigh J Jackobel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Gianno N Pannafino
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Paola A Morocho
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.,Department of Clinical Laboratory Science, Medical Scholars Master in Medical Technology Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Xia Xu
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
29
|
Berres ME, Garic A, Flentke GR, Smith SM. Transcriptome Profiling Identifies Ribosome Biogenesis as a Target of Alcohol Teratogenicity and Vulnerability during Early Embryogenesis. PLoS One 2017; 12:e0169351. [PMID: 28046103 PMCID: PMC5207668 DOI: 10.1371/journal.pone.0169351] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/15/2016] [Indexed: 01/05/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a leading cause of neurodevelopmental disability. Individuals with FASD may exhibit a characteristic facial appearance that has diagnostic utility. The mechanism by which alcohol disrupts craniofacial development is incompletely understood, as are the genetic factors that can modify individual alcohol vulnerability. Using an established avian model, we characterized the cranial transcriptome in response to alcohol to inform the mechanism underlying these cells’ vulnerability. Gallus gallus embryos having 3–6 somites were exposed to 52 mM alcohol and the cranial transcriptomes were sequenced thereafter. A total of 3422 genes had significantly differential expression. The KEGG pathways with the greatest enrichment of differentially expressed gene clusters were Ribosome (P = 1.2 x 10−17, 67 genes), Oxidative Phosphorylation (P = 4.8 x 10−12, 60 genes), RNA Polymerase (P = 2.2 x 10−3, 15 genes) and Spliceosome (P = 2.6 x 10−2, 39 genes). The preponderance of transcripts in these pathways were repressed in response to alcohol. These same gene clusters also had the greatest altered representation in our previous comparison of neural crest populations having differential vulnerability to alcohol-induced apoptosis. Comparison of differentially expressed genes in alcohol-exposed (3422) and untreated, alcohol-vulnerable (1201) transcriptomes identified 525 overlapping genes of which 257 have the same direction of transcriptional change. These included 36 ribosomal, 25 oxidative phosphorylation and 7 spliceosome genes. Using a functional approach in zebrafish, partial knockdown of ribosomal proteins zrpl11, zrpl5a, and zrps3a individually heightened vulnerability to alcohol-induced craniofacial deficits and increased apoptosis. In humans, haploinsufficiency of several of the identified ribosomal proteins are causative in craniofacial dysmorphologies such as Treacher Collins Syndrome and Diamond-Blackfan Anemia. This work suggests ribosome biogenesis may be a novel target mediating alcohol’s damage to developing neural crest. Our findings are consistent with observations that gene-environment interactions contribute to vulnerability in FASD.
Collapse
Affiliation(s)
- Mark E. Berres
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ana Garic
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - George R. Flentke
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan M. Smith
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: ,
| |
Collapse
|
30
|
Zage PE, Whittle SB, Shohet JM. CD114: A New Member of the Neural Crest-Derived Cancer Stem Cell Marker Family. J Cell Biochem 2016; 118:221-231. [PMID: 27428599 DOI: 10.1002/jcb.25656] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022]
Abstract
The neural crest is a population of cells in the vertebrate embryo that gives rise to a wide range of tissues and cell types, including components of the peripheral nervous system and the craniofacial skeleton as well as melanocytes and the adrenal medulla. Aberrations in neural crest development can lead to numerous diseases, including cancers such as melanoma and neuroblastoma. Cancer stem cells (CSCs) have been identified in these neural crest-derived tumors, and these CSCs demonstrate resistance to treatment and are likely key contributors to disease relapse. Patients with neural crest-derived tumors often have poor outcomes due to frequent relapses, likely due to the continued presence of residual treatment-resistant CSCs, and therapies directed against these CSCs are likely to improve patient outcomes. CSCs share many of the same genetic and biologic features of primordial neural crest cells, and therefore a better understanding of neural crest development will likely lead to the development of effective therapies directed against these CSCs. Signaling through STAT3 has been shown to be required for neural crest development, and granulocyte colony stimulating factor (GCSF)-mediated activation of STAT3 has been shown to play a role in the pathogenesis of neural crest-derived tumors. Expression of the cell surface marker CD114 (the receptor for GCSF) has been identified as a potential marker for CSCs in neural crest-derived tumors, suggesting that CD114 expression and function may contribute to disease relapse and poor patient outcomes. Here we review the processes of neural crest development and tumorigenesis and we discuss the previously identified markers for CSC subpopulations identified in neural crest tumors and their role in neural crest tumor biology. We also discuss the potential for CD114 and downstream intracellular signaling pathways as potential targets for CSC-directed therapy. J. Cell. Biochem. 118: 221-231, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter E Zage
- Division of Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, California
| | - Sarah B Whittle
- Department of Pediatrics, Section of Hematology-Oncology, Children's Cancer Center, Houston, Texas
| | - Jason M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Children's Cancer Center, Houston, Texas.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
31
|
Sondalle SB, Baserga SJ, Yelick PC. The Contributions of the Ribosome Biogenesis Protein Utp5/WDR43 to Craniofacial Development. J Dent Res 2016; 95:1214-20. [PMID: 27221611 DOI: 10.1177/0022034516651077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fairly recently, it was recognized that human ribosomopathies-developmental defects caused by mutations in ribosome biogenesis proteins-can exhibit tissue-specific defects rather than the expected global defects. This apparent anomaly-that seemingly ubiquitously expressed and required ribosomal proteins can have distinct functions in cell and tissue differentiation-has spurred new areas of research focused on better understanding translational mechanisms, biogenesis, and function in diverse cell types. This renewed appreciation for, and need to better understand, roles for ribosomal proteins in human development and disease has identified surprising similarities and differences in a variety of human ribosomopathies. Here, we discuss ribosomal protein functions in health and disease, focusing on the ribosome biogenesis protein Utp5/WDR43. New and exciting research in this field is anticipated to provide insight into a variety of previously understudied craniofacial dysostoses and result in significantly improved knowledge and understanding of roles for translational machinery in human craniofacial development and disease.
Collapse
Affiliation(s)
- S B Sondalle
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - S J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - P C Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University, Boston, MA, USA
| |
Collapse
|
32
|
Lau MCC, Kwong EML, Lai KP, Li JW, Ho JCH, Chan TF, Wong CKC, Jiang YJ, Tse WKF. Pathogenesis of POLR1C-dependent Type 3 Treacher Collins Syndrome revealed by a zebrafish model. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1147-58. [PMID: 26972049 DOI: 10.1016/j.bbadis.2016.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/05/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
Treacher Collins Syndrome (TCS) is a rare congenital birth disorder (1 in 50,000 live births) characterized by severe craniofacial defects, including the downward slanting palpebral fissures, hypoplasia of the facial bones, and cleft palate (CP). Over 90% of patients with TCS have a mutation in the TCOF1 gene. However, some patients exhibit mutations in two new causative genes, POLR1C and POLR1D, which encode subunits of RNA polymerases I and III, that affect ribosome biogenesis. In this study, we examine the role of POLR1C in TCS using zebrafish as a model system. Our data confirmed that polr1c is highly expressed in the facial region, and dysfunction of this gene by knockdown or knock-out resulted in mis-expression of neural crest cells during early development that leads to TCS phenotype. Next generation sequencing and bioinformatics analysis of the polr1c mutants further demonstrated the up-regulated p53 pathway and predicted skeletal disorders. Lastly, we partially rescued the TCS facial phenotype in the background of p53 mutants, which supported the hypothesis that POLR1C-dependent type 3 TCS is associated with the p53 pathway.
Collapse
Affiliation(s)
| | | | - Keng Po Lai
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Jing-Woei Li
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | | | - Ting-Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | | | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Taiwan
| | | |
Collapse
|
33
|
Dinman JD. Pathways to Specialized Ribosomes: The Brussels Lecture. J Mol Biol 2016; 428:2186-94. [PMID: 26764228 DOI: 10.1016/j.jmb.2015.12.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/17/2022]
Abstract
"Specialized ribosomes" is a topic of intense debate and research whose provenance can be traced to the earliest days of molecular biology. Here, the history of this idea is reviewed, and critical literature in which the specialized ribosomes have come to be presently defined is discussed. An argument supporting the evolution of a variety of ribosomes with specialized functions as a consequence of selective pressures acting on a near-infinite set of possible ribosomes is presented, leading to a discussion of how this may also serve as a biological buffering mechanism. The possible relationship between specialized ribosomes and human health is explored. A set of criteria and possible approaches are also presented to help guide the definitive identification of "specialized" ribosomes, and this is followed by a discussion of how synthetic biology approaches might be used to create new types of special ribosomes.
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, MD 20742, USA.
| |
Collapse
|
34
|
Brombin A, Joly JS, Jamen F. New tricks for an old dog: ribosome biogenesis contributes to stem cell homeostasis. Curr Opin Genet Dev 2015; 34:61-70. [PMID: 26343009 DOI: 10.1016/j.gde.2015.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 01/21/2023]
Abstract
Although considered a 'house-keeping' function, ribosome biogenesis is regulated differently between cells and can be modulated in a cell-type-specific manner. These differences are required to generate specialized ribosomes that contribute to the translational control of gene expression by selecting mRNA subsets to be translated. Thus, differences in ribosome biogenesis between stem and differentiated cells indirectly contribute to determine cell identity. The concept of the existence of stem cell-specific mechanisms of ribosome biogenesis has progressed from an attractive theory to a useful working model with important implications for basic and medical research.
Collapse
Affiliation(s)
- Alessandro Brombin
- CASBAH Group, University Paris-Saclay, University Paris-Sud, UMR CNRS 9197, Neuroscience Paris-Saclay Institute (NeuroPSI), Bât. 32/33, 1 Avenue de la Terrasse, F-91190 Gif-sur-Yvette, France; INRA, USC 1126, F-91190 Gif-sur-Yvette, France
| | - Jean-Stéphane Joly
- CASBAH Group, University Paris-Saclay, University Paris-Sud, UMR CNRS 9197, Neuroscience Paris-Saclay Institute (NeuroPSI), Bât. 32/33, 1 Avenue de la Terrasse, F-91190 Gif-sur-Yvette, France; INRA, USC 1126, F-91190 Gif-sur-Yvette, France
| | - Françoise Jamen
- CASBAH Group, University Paris-Saclay, University Paris-Sud, UMR CNRS 9197, Neuroscience Paris-Saclay Institute (NeuroPSI), Bât. 32/33, 1 Avenue de la Terrasse, F-91190 Gif-sur-Yvette, France; INRA, USC 1126, F-91190 Gif-sur-Yvette, France.
| |
Collapse
|
35
|
Thevenon J, Michot C, Bole C, Nitschke P, Nizon M, Faivre L, Munnich A, Lyonnet S, Bonnefont JP, Portes VD, Amiel J. RPL10 mutation segregating in a family with X-linked syndromic Intellectual Disability. Am J Med Genet A 2015; 167A:1908-12. [PMID: 25846674 DOI: 10.1002/ajmg.a.37094] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/16/2015] [Indexed: 11/12/2022]
Abstract
Intellectual disability is a neurodevelopmental disorder of impaired adaptive skills and low intelligence quotient. The overall prevalence is estimated at 2-3% in the general population with extreme clinical and genetic heterogeneity, and it has been associated with possibly causative mutations in more than 700 identified genes. In a recent review, among over 100 X-linked intellectual disability causative genes, eight were reported as "awaiting replication." Exome sequencing in a large family identified a missense mutation in RPL10 highly suggestive of X-linked intellectual disability. Herein, we report on the clinical description of four affected males. All patients presented apparent intellectual disability (4/4), psychomotor delay (4/4) with syndromic features including amniotic fluid excess (3/4), microcephaly (2/4), urogenital anomalies (3/4), cerebellar syndrome (2/4), and facial dysmorphism. In the literature, two mutations were reported in three families with affected males presenting with autism. This report confirms the implication of RPL10 mutations in neurodevelopmental disorders and extends the associated clinical spectrum from autism to syndromic intellectual disability.
Collapse
Affiliation(s)
- Julien Thevenon
- Service de Génétique, INSERM U781, Hôpital Necker-Enfants Malades, Institut Imagine, University Sorbonne-Paris-Cité, Paris, France.,FHU-TRANSLAD, Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, CHU de Dijon, Dijon, France
| | - Caroline Michot
- Service de Génétique, INSERM U781, Hôpital Necker-Enfants Malades, Institut Imagine, University Sorbonne-Paris-Cité, Paris, France
| | - Christine Bole
- Plateforme de bioinformatique de l'Institut Imagine, Hôpital Necker, Paris, France
| | - Patrick Nitschke
- Plateforme de bioinformatique de l'Institut Imagine, Hôpital Necker, Paris, France
| | - Mathilde Nizon
- Laboratoire de Génétique Médicale, Hôpital Necker-Enfants Malades, APHP, Université Paris Descartes, Institut Imagine, Paris, France
| | - Laurence Faivre
- FHU-TRANSLAD, Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, CHU de Dijon, Dijon, France
| | - Arnold Munnich
- Service de Génétique, INSERM U781, Hôpital Necker-Enfants Malades, Institut Imagine, University Sorbonne-Paris-Cité, Paris, France
| | - Stanislas Lyonnet
- Service de Génétique, INSERM U781, Hôpital Necker-Enfants Malades, Institut Imagine, University Sorbonne-Paris-Cité, Paris, France
| | - Jean-Paul Bonnefont
- Laboratoire de Génétique Médicale, Hôpital Necker-Enfants Malades, APHP, Université Paris Descartes, Institut Imagine, Paris, France
| | - Vincent Des Portes
- Service de Neurologie Pédiatrique, CHU Lyon, Hôpital Femme Mère Enfant, Bron, France
| | - Jeanne Amiel
- Service de Génétique, INSERM U781, Hôpital Necker-Enfants Malades, Institut Imagine, University Sorbonne-Paris-Cité, Paris, France
| |
Collapse
|
36
|
Yelick PC, Trainor PA. Ribosomopathies: Global process, tissue specific defects. Rare Dis 2015; 3:e1025185. [PMID: 26442198 PMCID: PMC4590025 DOI: 10.1080/21675511.2015.1025185] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/18/2015] [Accepted: 02/26/2015] [Indexed: 01/01/2023] Open
Abstract
Disruptions in ribosomal biogenesis would be expected to have global and in fact lethal effects on a developing organism. However, mutations in ribosomal protein genes have been shown in to exhibit tissue specific defects. This seemingly contradictory finding - that globally expressed genes thought to play fundamental housekeeping functions can in fact exhibit tissue and cell type specific functions - provides new insight into roles for ribosomes, the protein translational machinery of the cell, in regulating normal development and disease. Furthermore it illustrates the surprisingly dynamic nature of processes regulating cell type specific protein translation. In this review, we discuss our current knowledge of a variety of ribosomal protein mutations associated with human disease, and models to better understand the molecular mechanisms associated with each. We use specific examples to emphasize both the similarities and differences between the effects of various human ribosomal protein mutations. Finally, we discuss areas of future study that are needed to further our understanding of the role of ribosome biogenesis in normal development, and possible approaches that can be used to treat debilitating ribosomopathy diseases.
Collapse
Affiliation(s)
| | - Paul A Trainor
- Stowers Institute ; Kansas City, MO USA ; University of Kansas Medical Center ; Kansas City, KS USA
| |
Collapse
|
37
|
Abstract
A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients.
Collapse
Affiliation(s)
- Annita Achilleos
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|