1
|
Amirkhani Z, Gholi AM, Asghari S, Hakak D, Pouryousef M, Yahyaei B, Ziaolhagh SJ. The effect of garlic and stevia extract with aerobic exercise on hypothalamic leptin and ghrelin receptor mRNA expression and insulin resistance in obese rats. BMC Complement Med Ther 2025; 25:104. [PMID: 40087612 PMCID: PMC11907805 DOI: 10.1186/s12906-025-04756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/10/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Obesity has recently become the most prevalent diet-related disease worldwide. This study aimed to investigate the effects of aerobic exercise, stevia, and garlic extract on leptin and ghrelin receptor mRNA, as well as the interactions between insulin and glucose in relation to these genes. METHODS A total of 50 male Wistar rats were split into two groups: one group was fed regular rodent food, while the other was fed a high-fat diet for 12 weeks to induce obesity. The obese rats were then divided into six groups of five (N = 5) based on Lee's index: an obese control group (OC), obese treated with garlic, stevia (OGS), obese aerobic exercise (OE), obese garlic and aerobic exercise (OGE), Obese stevia and aerobic exercise (OSE), and a Normal weight group (NC). The exercise groups participated in a gradually increasing aerobic walking program, whereas the stevia and garlic groups received daily oral doses of their respective extracts. The expression of leptin and ghrelin receptor genes in the hypothalamus was measured using real-time PCR, and insulin resistance was calculated using the HOMA/IR formula. Statistical analysis was conducted using ANOVA, with a significance level set at P < 0.05. RESULTS The obese (O) rats experienced a significant increase in body weight compared with the control (C) rats (p = 0.013), whereas the treated rats showed no significant changes in weight. Leptin receptor mRNA levels were significantly lower in O rats than in C rats (p = 0.00), but increased significantly in the OS (p = 0.000) and OSE (p = 0.034) groups compared with obese rats. Ghrelin receptor mRNA levels were significantly higher in the O group than in the C group (p = 0.035), but decreased in all treatment groups, with the OE (p = 0.001), OGE (p = 0.001), and OSE (p = 0.004) groups showing the greatest reductions. Insulin resistance increased slightly in the O group compared with the C group (p = 0.112), but was lowest in the OS group among all groups (p = 0.018). CONCLUSIONS Stevia significantly improved leptin and ghrelin receptor mRNA expression, glucose levels, and insulin resistance in obese rats, showing its potential as an effective dietary intervention for managing obesity.
Collapse
Affiliation(s)
- Zohre Amirkhani
- Department of Exercise Physiology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Armin Morteza Gholi
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Sara Asghari
- Department of Exercise Physiology, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Danial Hakak
- Department of Exercise Physiology, Neyshaboor Branch, Islamic Azad University, Neyshaboor, Iran
| | - Mahdi Pouryousef
- Department of Exercise Physiology, Faculty of physical education and sport science, Kharazmi University, Tehran, Iran
| | - Behrooz Yahyaei
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
- Department of Medical Sciences, Biological Nanoparticles in Medicine Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Sayyed-Javad Ziaolhagh
- Department of Medical Sciences, Biological Nanoparticles in Medicine Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
- Department of Exercise Physiology, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| |
Collapse
|
2
|
Santos HO, Penha-Silva N. Revisiting the concepts of de novo lipogenesis to understand the conversion of carbohydrates into fats: Stop overvaluing and extrapolating the renowned phrase "fat burns in the flame of carbohydrate". Nutrition 2025; 130:112617. [PMID: 39566326 DOI: 10.1016/j.nut.2024.112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Carbohydrates can be converted into fatty acids via de novo lipogenesis (DNL). Although DNL is considered inefficient, these endogenous fatty acids contribute substantially to the esterification pathway in adipose tissue, together with fatty acids of feeding. This article revisited the concepts of DNL and aimed to discuss the clinical magnitude of carbohydrate overfeeding and fat mass accumulation. Although fat storage resulting from fat intake is more favorable for fat mass accrual than carbohydrates due to molecule structure and metabolism (e.g., oxidation and thermic effect), carbohydrates can substantially participate in lipogenesis and esterification under excess carbohydrate intake over time. Regarding only monosaccharide overfeeding, glucose and fructose favor the subcutaneous and visceral adipose tissue, respectively. While fructose and sucrose are considered villains in nonalcoholic fatty liver disease, energy surplus from carbohydrates, regardless of sources, can be considered an underlying cause of obesity. Interestingly, some degree of DNL in adipocytes may be favorable to mitigate a high deposition of fatty acids in the liver, conferring a physiological role. Although "fat burns in the flame of carbohydrate" is a praiseworthy phrase that has helped describe basic concepts in biochemistry for many decades, it appears to be overvalued and extrapolated even nowadays. DNL cannot be neglected. It is time to consider DNL an efficient biochemical process in health and disease.
Collapse
Affiliation(s)
- Heitor O Santos
- School of Medicine, Uberlândia Federal University, Uberlândia, MG, Brazil.
| | - Nilson Penha-Silva
- Institute of Biotechnology, Uberlândia Federal University, Uberlândia, MG, Brazil
| |
Collapse
|
3
|
Ahmad I, Gupta S, Faulkner P, Mullens D, Thomas M, Sytha SP, Ivanov I, Cai JJ, Heaps CL, Newell-Fugate AE. Single-nucleus transcriptomics of epicardial adipose tissue from female pigs reveals effects of exercise training on resident innate and adaptive immune cells. Cell Commun Signal 2024; 22:243. [PMID: 38671495 PMCID: PMC11046969 DOI: 10.1186/s12964-024-01587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is a leading cause of death in women. Epicardial adipose tissue (EAT) secretes cytokines to modulate coronary artery function, and the release of fatty acids from EAT serves as a readily available energy source for cardiomyocytes. However, despite having beneficial functions, excessive amounts of EAT can cause the secretion of proinflammatory molecules that increase the instability of atherosclerotic plaques and contribute to CAD progression. Although exercise mitigates CAD, the mechanisms by which exercise impacts EAT are unknown. The Yucatan pig is an excellent translational model for the effects of exercise on cardiac function. Therefore, we sought to determine if chronic aerobic exercise promotes an anti-inflammatory microenvironment in EAT from female Yucatan pigs. METHODS Sexually mature, female Yucatan pigs (n = 7 total) were assigned to sedentary (Sed, n = 3) or exercise (Ex, n = 4) treatments, and coronary arteries were occluded (O) with an ameroid to mimic CAD or remained non-occluded (N). EAT was collected for bulk (n = 7 total) and single nucleus transcriptomic sequencing (n = 2 total, 1 per exercise treatment). RESULTS Based on the bulk transcriptomic analysis, exercise upregulated S100 family, G-protein coupled receptor, and CREB signaling in neurons canonical pathways in EAT. The top networks in EAT affected by exercise as measured by bulk RNA sequencing were SRC kinase family, fibroblast growth factor receptor, Jak-Stat, and vascular endothelial growth factor. Single nucleus transcriptomic analysis revealed that exercise increased the interaction between immune, endothelial, and mesenchymal cells in the insulin-like growth factor pathway and between endothelial and other cell types in the platelet endothelial cell adhesion molecule 1 pathway. Sub-clustering revealed nine cell types in EAT, with fibroblast and macrophage populations predominant in O-Ex EAT and T cell populations predominant in N-Ex EAT. Unlike the findings for exercise alone as a treatment, there were not increased interactions between endothelial and mesenchymal cells in O-Ex EAT. Coronary artery occlusion impacted the most genes in T cells and endothelial cells. Genes related to fatty acid metabolism were the most highly upregulated in non-immune cells from O-Ex EAT. Sub-clustering of endothelial cells revealed that N-Ex EAT separated from other treatments. CONCLUSIONS According to bulk transcriptomics, exercise upregulated pathways and networks related to growth factors and immune cell communication. Based on single nucleus transcriptomics, aerobic exercise increased cell-to-cell interaction amongst immune, mesenchymal, and endothelial cells in female EAT. Yet, exercise was minimally effective at reversing alterations in gene expression in endothelial and mesenchymal cells in EAT surrounding occluded arteries. These findings lay the foundation for future work focused on the impact of exercise on cell types in EAT.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shreyan Gupta
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Patricia Faulkner
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Destiny Mullens
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Micah Thomas
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sharanee P Sytha
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Cristine L Heaps
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Annie E Newell-Fugate
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Kesharwani D, Brown AC. Navigating the Adipocyte Precursor Niche: Cell-Cell Interactions, Regulatory Mechanisms and Implications for Adipose Tissue Homeostasis. JOURNAL OF CELLULAR SIGNALING 2024; 5:65-86. [PMID: 38826152 PMCID: PMC11141760 DOI: 10.33696/signaling.5.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Support for stem cell self-renewal and differentiation hinges upon the intricate microenvironment termed the stem cell 'niche'. Within the adipose tissue stem cell niche, diverse cell types, such as endothelial cells, immune cells, mural cells, and adipocytes, intricately regulate the function of adipocyte precursors. These interactions, whether direct or indirect, play a pivotal role in governing the balance between self-renewal and differentiation of adipocyte precursors into adipocytes. The mechanisms orchestrating the maintenance and coordination of this niche are still in the early stages of comprehension, despite their crucial role in regulating adipose tissue homeostasis. The complexity of understanding adipocyte precursor renewal and differentiation is amplified due to the challenges posed by the absence of suitable surface receptors for identification, limitations in creating optimal ex vivo culture conditions for expansion and constraints in conducting in vivo studies. This review delves into the current landscape of knowledge surrounding adipocyte precursors within the adipose stem cell niche. We will review the identification of adipocyte precursors, the cell-cell interactions they engage in, the factors influencing their renewal and commitment toward adipocytes and the transformations they undergo during instances of obesity.
Collapse
Affiliation(s)
- Devesh Kesharwani
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Aaron C. Brown
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469, USA
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
5
|
Ahmad I, Gupta S, Faulkner P, Mullens D, Thomas M, Sytha SP, Ivanov I, Cai JJ, Heaps CL, Newell-Fugate AE. Single-nucleus transcriptomics of epicardial adipose tissue from females reveals exercise control of innate and adaptive immune cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565385. [PMID: 37961306 PMCID: PMC10635101 DOI: 10.1101/2023.11.02.565385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Coronary artery disease (CAD) is a leading cause of death in women. Although exercise mitigates CAD, the mechanisms by which exercise impacts epicardial adipose tissue (EAT) are unknown. We hypothesized that exercise promotes an anti-inflammatory microenvironment in EAT from female pigs. Yucatan pigs (n=7) were assigned to sedentary (Sed) or exercise (Ex) treatments and coronary arteries were occluded (O) with an ameroid to mimic CAD or remained non-occluded (N). EAT was collected for bulk and single nucleus transcriptomic sequencing (snRNA-seq). Exercise upregulated G-protein coupled receptor, S100 family, and FAK pathways and downregulated the coagulation pathway. Exercise increased the interaction between immune, endothelial, and mesenchymal cells in the insulin-like growth factor pathway and between endothelial and other cell types in the platelet endothelial cell adhesion molecule 1 pathway. Sub-clustering revealed nine cell types in EAT with fibroblast and macrophage populations predominant in O-Ex EAT and T cell population predominant in N-Ex EAT. Coronary occlusion impacted the largest number of genes in T and endothelial cells. Genes related to fatty acid metabolism were the most highly upregulated in non-immune cells from O-Ex EAT. Sub-clustering of endothelial cells revealed that N-Ex EAT separated from other treatments. In conclusion, aerobic exercise increased interaction amongst immune and mesenchymal and endothelial cells in female EAT. Exercise was minimally effective at reversing alterations in gene expression in endothelial and mesenchymal cells in EAT surrounding occluded arteries. These findings lay the foundation for future work focused on the impact of exercise on cell types in EAT.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Shreyan Gupta
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Patricia Faulkner
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Destiny Mullens
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Micah Thomas
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Sharanee P. Sytha
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Cristine L. Heaps
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Annie E. Newell-Fugate
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Wang H, Li Y, Dai Y, Ma L, Di D, Liu J. Screening, structural characterization and anti-adipogenesis effect of a water-soluble polysaccharide from Lycium barbarum L. by an activity-oriented approach. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
7
|
Exercise Improves Redox Homeostasis and Mitochondrial Function in White Adipose Tissue. Antioxidants (Basel) 2022; 11:antiox11091689. [PMID: 36139762 PMCID: PMC9495527 DOI: 10.3390/antiox11091689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Exercise has beneficial effects on energy balance and also improves metabolic health independently of weight loss. Adipose tissue function is a critical denominator of a healthy metabolism but the adaptation of adipocytes in response to exercise is insufficiently well understood. We have previously shown that one aerobic exercise session was associated with increased expression of antioxidant and cytoprotective genes in white adipose tissue (WAT). In the present study, we evaluate the chronic effects of physical exercise on WAT redox homeostasis and mitochondrial function. Adult male Wistar rats were separated into two groups: a control group that did not exercise and a group that performed running exercise sessions on a treadmill for 30 min, 5 days per week for 9 weeks. Reactive oxygen species (ROS) generation, antioxidant enzyme activities, mitochondrial function, markers of oxidative stress and inflammation, and proteins related to DNA damage response were analyzed. In WAT from the exercise group, we found higher mitochondrial respiration in states I, II, and III of Complex I and Complex II, followed by an increase in ATP production, and the ROS/ATP ratio when compared to tissues from control rats. Regarding redox homeostasis, NADPH oxidase activity, protein carbonylation, and lipid peroxidation levels were lower in WAT from the exercise group when compared to control tissues. Moreover, antioxidant enzymatic activity, reduced glutathione/oxidized glutathione ratio, and total nuclear factor erythroid-2, like-2 (NFE2L2/NRF2) protein levels were higher in the exercise group compared to control. Finally, we found that exercise reduced the phosphorylation levels of H2AX histone (γH2AX), a central protein that contributes to genome stability through the signaling of DNA damage. In conclusion, our results show that chronic exercise modulates redox homeostasis in WAT, improving antioxidant capacity, and mitochondrial function. This hormetic remodeling of adipocyte redox balance points to improved adipocyte health and seems to be directly associated with the beneficial effects of exercise.
Collapse
|
8
|
Islam MA, Khairnar R, Fleishman J, Thompson K, Kumar S. Lipocalin-Type Prostaglandin D 2 Synthase Protein- A Central Player in Metabolism. Pharm Res 2022; 39:2951-2963. [PMID: 35799081 DOI: 10.1007/s11095-022-03329-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Abstract
Lipocalin-type prostaglandin D synthase was previously known as β-trace protein (BTP), a low-molecular-weight glycoprotein that is heavily expressed in human cerebrospinal fluid. Nevertheless, it is also seen to be expressed in numerous other tissues including the kidney, liver, lung, heart, adipose, muscle, and pancreas. Functionally, L-PGDS behaves like a lipocalin type protein where it helps in binding and transportation of small lipophilic substances, such as steroids, retinoids, and other lipophilic ligands. Enzymatically, L-PGDS functions as a prostaglandin synthase where it helps in the production of PGD2 by catalyzing the isomerization of PGH2, a common precursor of the two series of prostaglandins. PGD2 regulates its physiological function through two individual receptors named DP1 and DP2. L-PGDS has been a central player in many diseases, its role in metabolism including diabetes, fatty liver disease, and obesity has gathered a large attention. In this review, we summarize the current state of knowledge about L-PGDS and it's signaling in adipose, hepatic, skeletal muscle, and pancreas tissues, which are core targets for metabolic studies. Modulation of L-PGDS signaling can be considered as a potential future therapeutic target for the treatment of insulin resistance as well as fatty liver disease.
Collapse
Affiliation(s)
- Md Asrarul Islam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, SAH 141A, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Rhema Khairnar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, SAH 141A, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, SAH 141A, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Kamala Thompson
- Department of Biology, Chemistry, and Environmental Studies, Molloy College, Rockville Centre, NY, 11571, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, SAH 141A, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
9
|
Garritson JD, Boudina S. The Effects of Exercise on White and Brown Adipose Tissue Cellularity, Metabolic Activity and Remodeling. Front Physiol 2021; 12:772894. [PMID: 34795599 PMCID: PMC8593176 DOI: 10.3389/fphys.2021.772894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence suggests a significant functional role of adipose tissue in maintaining whole-body metabolic health. It is well established that obesity leads to compositional and morphological changes in adipose tissue that can contribute to the development of cardiometabolic disorders. Thus, the function and size of adipocytes as well as perfusion and inflammation can significantly impact health outcomes independent of body mass index. Lifestyle interventions such as exercise can improve metabolic homeostasis and reduce the risk for developing cardiometabolic disorders. Adipose tissue displays remarkable plasticity in response to external stimuli such as dietary intervention and exercise. Here we review systemic and local effects of exercise that modulate white and brown adipose tissue cellularity, metabolic function and remodeling in humans and animals.
Collapse
Affiliation(s)
- Jacob D Garritson
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Skeletal Muscle-Adipose Tissue-Tumor Axis: Molecular Mechanisms Linking Exercise Training in Prostate Cancer. Int J Mol Sci 2021; 22:ijms22094469. [PMID: 33922898 PMCID: PMC8123194 DOI: 10.3390/ijms22094469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Increased visceral adiposity may influence the development of prostate cancer (PCa) aggressive tumors and cancer mortality. White adipose tissue (WAT), usually referred to as periprostatic adipose tissue (PPAT), surrounds the prostatic gland and has emerged as a potential mediator of the tumor microenvironment. Exercise training (ET) induces several adaptations in both skeletal muscle and WAT. Some of these effects are mediated by ET-induced synthesis and secretion of several proteins, known as myo- and adipokines. Together, myokines and adipokines may act in an endocrine-like manner to favor communication between skeletal muscle and WAT, as they may work together to improve whole-body metabolic health. This crosstalk may constitute a potential mechanism by which ET exerts its beneficial role in the prevention and treatment of PCa-related disorders; however, this has not yet been explored. Therefore, we reviewed the current evidence on the effects of skeletal muscle–WAT–tumor crosstalk in PCa, and the potential mediators of this process to provide a better understanding of underlying ET-related mechanisms in cancer.
Collapse
|
11
|
Kuppusamy P, Ilavenil S, Hwang IH, Kim D, Choi KC. Ferulic Acid Stimulates Adipocyte-Specific Secretory Proteins to Regulate Adipose Homeostasis in 3T3-L1 Adipocytes. Molecules 2021; 26:molecules26071984. [PMID: 33915783 PMCID: PMC8037266 DOI: 10.3390/molecules26071984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 01/16/2023] Open
Abstract
Obesity has recently emerged as a public health issue facing developing countries in the world. It is caused by the accumulation of fat in adipose, characterized by insulin resistance, excessive lipid accumulation, inflammation, and oxidative stress, leading to an increase in adipokine levels. Herein, we investigated the capacity of a bioactive polyphenolic compound (ferulic acid (FA)) to control adipocyte dysfunction in 3T3-L1 adipocytes (in vitro). Key adipocyte differentiation markers, glycerol content, lipolysis-associated mRNA, and proteins were measured in experimental adipocytes. FA-treated adipocytes exhibited downregulated key adipocyte differentiation factors peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAT enhancer binding-proteins-α (C/EBP-α) and its downstream targets in a time-dependent manner. The FA-treated 3T3-L1 adipocytes showed an increased release of glycerol content compared with non-treated adipocytes. Also, FA treatment significantly up-regulated the lipolysis-related factors, including p-HSL, and p-perilipin, and down-regulated ApoD, Sema3C, Cxcl12, Sfrp2, p-stearoyl-CoA desaturase 1 (SCD1), adiponectin, and Grk5. Also, the FA treatment showed significantly down-regulated adipokines leptin, chemerin, and irisin than the non-treated cells. The present findings indicated that FA showed significant anti-adipogenic and lipogenic activities by regulating key adipocyte factors and enzyme, enhanced lipolysis by HSL/perilipin cascade. FA is considered a potent molecule to prevent obesity and its associated metabolic changes in the future.
Collapse
Affiliation(s)
- Palaniselvam Kuppusamy
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea; (P.K.); (S.I.)
| | - Soundharrajan Ilavenil
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea; (P.K.); (S.I.)
| | - In Ho Hwang
- Department of Animal Science, College of Agricultural and Life Science, Chonbuk National University, Jeonju 54896, Korea;
| | - Dahye Kim
- Faculty of Biotechnology, College of Applied Life Science, Jeju National University, Jeonju 63294, Korea
- Correspondence: (D.K.); (K.C.C.); Tel.: +82-64-754-3317 (D.K.); +82-41-580-6752 (K.C.C.); Fax: +82-64-756-3348 (D.K.); +82-41-580-6779 (K.C.C.)
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea; (P.K.); (S.I.)
- Correspondence: (D.K.); (K.C.C.); Tel.: +82-64-754-3317 (D.K.); +82-41-580-6752 (K.C.C.); Fax: +82-64-756-3348 (D.K.); +82-41-580-6779 (K.C.C.)
| |
Collapse
|
12
|
Foright RM, Johnson GC, Kahn D, Charleston CA, Presby DM, Bouchet CA, Wellberg EA, Sherk VD, Jackman MR, Greenwood BN, MacLean PS. Compensatory eating behaviors in male and female rats in response to exercise training. Am J Physiol Regul Integr Comp Physiol 2020; 319:R171-R183. [PMID: 32551825 PMCID: PMC7473893 DOI: 10.1152/ajpregu.00259.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022]
Abstract
Exercise is often used as a strategy for weight loss maintenance. In preclinical models, we have shown that exercise may be beneficial because it counters the biological drive to regain weight. However, our studies have demonstrated sex differences in the response to exercise in this context. In the present study, we sought to better understand why females and males exhibit different compensatory food eating behaviors in response to regular exercise. Using a forced treadmill exercise paradigm, we measured weight gain, energy expenditure, food intake in real time, and the anorectic effects of leptin. The 4-wk exercise training resulted in reduced weight gain in males and sustained weight gain in females. In male rats, exercise decreased intake, whereas it increased food intake in females. Our results suggest that the anorectic effects of leptin were not responsible for these sex differences in appetite in response to exercise. If these results translate to the human condition, they may reveal important information for the use and application of regular exercise programs.
Collapse
Affiliation(s)
- Rebecca M Foright
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ginger C Johnson
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Darcy Kahn
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Catherine A Charleston
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David M Presby
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Courtney A Bouchet
- Department of Psychology, University of Colorado Denver, Denver, Colorado
| | - Elizabeth A Wellberg
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vanessa D Sherk
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew R Jackman
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Paul S MacLean
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
13
|
A combined healthy strategy for successful weight loss, weight maintenance and improvement of hepatic lipid metabolism. J Nutr Biochem 2020; 85:108456. [PMID: 32810797 DOI: 10.1016/j.jnutbio.2020.108456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Obesity is critically related with the development of metabolic and pathophysiological alterations among which non-alcoholic fatty liver disease (NAFLD) is of especial relevance. Although there are numerous strategies to successfully treat obesity, the prevention of weight regain still remains challenging for individuals who have undergone weight loss programs. In such context, diet and physical activity are considered essential for the regulation of body weight and lipid metabolism. In this study, rats were fed a high-fat diet (HFD) to induce obesity and alterations in hepatic lipid metabolism. Obese rats were then treated with single or combined strategies of caloric restriction, physical exercise, and/or pharmacological treatment with an appetite suppressant, to lose weight, reverse the obesity-related alterations in hepatic morphology and lipid metabolism and maintain the beneficial effects of the interventions used. HFD induced excess body weight, hepatic steatosis, altered fatty acid profile, dysregulated gene expression of lipogenic and lipolytic enzymes, as well as plasma markers of liver damage, and modifications in liver antioxidant enzyme activity. Such alterations were ameliorated by caloric restriction in combination with a mixed training protocol and/or food-intake inhibitor administration during a weight loss intervention period of 3 weeks, and the beneficial effects remained after 6 weeks of weight maintenance, with some interesting interactions observed. In conclusion, weight loss strategies assayed were efficient at correcting the obesogenic action of a HFD and related alterations in hepatic functionality through different molecular mechanisms. The beneficial effects were also evident along the post-intervention maintenance period to avoid body weight regain.
Collapse
|
14
|
Sherk VD, Jackman MR, Higgins JA, Giles ED, Foright RM, Presby DM, Carpenter RD, Johnson GC, Oljira R, Houck JA, Maclean PS. Impact of Exercise and Activity on Weight Regain and Musculoskeletal Health Post-Ovariectomy. Med Sci Sports Exerc 2020; 51:2465-2473. [PMID: 31274683 DOI: 10.1249/mss.0000000000002082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to determine whether obesity and/or exercise training alters weight regain and musculoskeletal health after ovariectomy (OVX). Female rats were fed high-fat diet (HFD) to reveal obesity-prone (OP) and obesity-resistant (OR) phenotypes. The OP and OR exercising (EX) and sedentary (SED) rats were calorically restricted to lose 15% of body weight using medium-fat diet. Rats were then maintained in energy balance for 8 wk before OVX. After OVX and a brief calorically limited phase, rats were allowed to eat ad libitum until body weight plateaued. Starting at weight loss, EX ran 1 h·d, 6 d·wk, 15 m·min. Energy intake, spontaneous physical activity (SPA), and total energy expenditure were evaluated at the end of weight maintenance pre-OVX, and at three time points post-OVX: before weight regain, during early regain, and after regain. Data are presented as mean ± SE. Exercise attenuated weight regain after OVX in OP only (OP-EX, 123 ± 10 g; OP-SED, 165 ± 12 g; OR-EX, 121 ± 6 g; OR-SED, 116 ± 6 g), which was primarily an attenuation of fat gain. The early post-OVX increase in energy intake explained much of the weight regain, and was similar across groups. Exercising improved bone strength, as did maintaining SPA. Group differences in muscle mitochondrial respiration were not significant. The large decrease in SPA due to OVX was persistent, but early weight regain was dependent on decreased SPA. In conclusion, leanness and exercise do not necessarily protect from OVX-induced weight gain. Exercise prevented weight gain in obese rats, but loss of SPA was the greatest contributor to post-OVX weight gain. Thus, understanding the mechanisms resulting in reduction in SPA after ovarian hormone loss is critical in the prevention of menopause-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Vanessa D Sherk
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Matthew R Jackman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Janine A Higgins
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Erin D Giles
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX
| | - Rebecca M Foright
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David M Presby
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - R Dana Carpenter
- Department of Mechanical Engineering, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Robera Oljira
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Julie A Houck
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Paul S Maclean
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
15
|
Wang R, Tian H, Guo D, Tian Q, Yao T, Kong X. Impacts of exercise intervention on various diseases in rats. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:211-227. [PMID: 32444146 PMCID: PMC7242221 DOI: 10.1016/j.jshs.2019.09.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/06/2019] [Accepted: 09/06/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exercise is considered as an important intervention for treatment and prevention of several diseases, such as osteoarthritis, obesity, hypertension, and Alzheimer's disease. This review summarizes decadal exercise intervention studies with various rat models across 6 major systems to provide a better understanding of the mechanisms behind the effects that exercise brought. METHODS PubMed was utilized as the data source. To collect research articles, we used the following terms to create the search: (exercise [Title] OR physical activity [Title] OR training [Title]) AND (rats [Title/Abstract] OR rat [Title/Abstract] OR rattus [Title/Abstract]). To best cover targeted studies, publication dates were limited to "within 11 years." The exercise intervention methods used for different diseases were sorted according to the mode, frequency, and intensity of exercise. RESULTS The collected articles were categorized into studies related to 6 systems or disease types: motor system (17 articles), metabolic system (110 articles), cardiocerebral vascular system (171 articles), nervous system (71 articles), urinary system (2 articles), and cancer (21 articles). Our review found that, for different diseases, exercise intervention mostly had a positive effect. However, the most powerful effect was achieved by using a specific mode of exercise that addressed the characteristics of the disease. CONCLUSION As a model animal, rats not only provide a convenient resource for studying human diseases but also provide the possibility for exploring the molecular mechanisms of exercise intervention on diseases. This review also aims to provide exercise intervention frameworks and optimal exercise dose recommendations for further human exercise intervention research.
Collapse
Affiliation(s)
- Ruwen Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Dandan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Qianqian Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ting Yao
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Xingxing Kong
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Short-Term Caloric Restriction Attenuates Obesity-Induced Pro-Inflammatory Response in Male Rhesus Macaques. Nutrients 2020; 12:nu12020511. [PMID: 32085416 PMCID: PMC7071433 DOI: 10.3390/nu12020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
White adipose tissue (WAT) hypertrophy is an essential hallmark of obesity and is associated with the activation of resident immune cells. While the benefits of caloric restriction (CR) on health span are generally accepted, its effects on WAT physiology are not well understood. We previously demonstrated that short-term CR reverses obesity in male rhesus macaques exposed to a high-fat Western-style diet (WSD). Here, we analyzed subcutaneous WAT biopsies collected from this cohort of animals before and after WSD and following CR. This analysis showed that WSD induced adipocyte hypertrophy and inhibited β-adrenergic-simulated lipolysis. CR reversed adipocyte hypertrophy, but WAT remained insensitive to β-adrenergic agonist stimulation. Whole-genome transcriptional analysis revealed that β3-adrenergic receptor and de novo lipogenesis genes were downregulated by WSD and remained downregulated after CR. In contrast, WSD-induced pro-inflammatory gene expression was effectively reversed by CR. Furthermore, peripheral blood monocytes isolated during the CR period exhibited a significant reduction in the production of pro-inflammatory cytokines compared to those obtained after WSD. Collectively, this study demonstrates that short-term CR eliminates an obesity-induced pro-inflammatory response in WAT and peripheral monocytes.
Collapse
|
17
|
Presby DM, Checkley LA, Jackman MR, Higgins JA, Jones KL, Giles ED, Houck JA, Webb PG, Steig AJ, Johnson GC, Rudolph MC, MacLean PS. Regular exercise potentiates energetically expensive hepatic de novo lipogenesis during early weight regain. Am J Physiol Regul Integr Comp Physiol 2019; 317:R684-R695. [PMID: 31553623 DOI: 10.1152/ajpregu.00074.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exercise is a potent facilitator of long-term weight loss maintenance (WLM), whereby it decreases appetite and increases energy expenditure beyond the cost of the exercise bout. We have previously shown that exercise may amplify energy expenditure through energetically expensive nutrient deposition. Therefore, we investigated the effect of exercise on hepatic de novo lipogenesis (DNL) during WLM and relapse to obesity. Obese rats were calorically restricted with (EX) or without (SED) treadmill exercise (1 h/day, 6 days/wk, 15 m/min) to induce and maintain weight loss. After 6 wk of WLM, subsets of WLM-SED and WLM-EX rats were allowed ad libitum access to food for 1 day to promote relapse (REL). An energy gap-matched group of sedentary, relapsing rats (REL-GM) were provided a diet matched to the positive energy imbalance of the REL-EX rats. During relapse, exercise increased enrichment of hepatic DN-derived lipids and induced hepatic molecular adaptations favoring DNL compared with the gap-matched controls. In the liver, compared with both REL-SED and REL-GM rats, REL-EX rats had lower hepatic expression of genes required for cholesterol biosynthesis; greater hepatic expression of genes that mediate very low-density lipoprotein synthesis and secretion; and greater mRNA expression of Cyp27a1, which encodes an enzyme involved in the biosynthesis of bile acids. Altogether, these data provide compelling evidence that the liver has an active role in exercise-mediated potentiation of energy expenditure during early relapse.
Collapse
Affiliation(s)
- David M Presby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - L Allyson Checkley
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Matthew R Jackman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Janine A Higgins
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Erin D Giles
- Department of Nutrition and Food Science at Texas A&M University, College Station, Texas
| | - Julie A Houck
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Patricia G Webb
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Amy J Steig
- Center for Human Nutrition at the University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Paul S MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.,Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.,Center for Human Nutrition at the University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
18
|
Motta VF, Bargut TL, Souza-Mello V, Aguila MB, Mandarim-de-Lacerda CA. Browning is activated in the subcutaneous white adipose tissue of mice metabolically challenged with a high-fructose diet submitted to high-intensity interval training. J Nutr Biochem 2019; 70:164-173. [PMID: 31207355 DOI: 10.1016/j.jnutbio.2019.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/01/2018] [Accepted: 05/10/2019] [Indexed: 12/17/2022]
Abstract
Fructose may induce an endocrine dysfunction in adipose tissue in rodents. Browning is identified by deposits of beige adipocytes in subcutaneous white adipose tissue (sWAT). We study the effects of the high-intensity interval training (HIIT) on the formation of beige adipocytes in the sWAT of mice fed a high-fructose diet. Sixty male mice (3 months old; C57BL/6) were fed two diets for 18 weeks (n=30 each): control diet (C) or high-fructose diet (F). At the 10th week, for an additional 8-week period, the groups were (n=15 each) nontrained (NT) or trained (HIIT): C-NT, C-HIIT, F-NT and F-HIIT. We evaluated body mass, energy expenditure and molecular analyses for browning and thermogenic markers in sWAT. The HIIT groups showed significantly lower body mass and increased energy expenditure. The consumption of fructose was linked with an increased sWAT mass. However, HIIT caused a reduction of sWAT mass compared to the NT groups. Energy intake was parallel in the groups, regardless of the diet type and HIIT. Fructose was related to higher glucose and insulin levels and hypertrophied sWAT adipocytes, but HIIT decreased both glucose and insulin levels and led to the appearance of brown fat-like adipocytes dispersed in sWAT with higher expression of browning markers. Also, fructose reduced the sWAT markers of mitochondrial biogenesis and beta-oxidation, which were enhanced by HIIT. In conclusion, HIIT might stimulate the sWAT browning in mice fed a high-fructose diet associated with beneficial changes in mitochondrial biogenesis and beta-oxidation markers, contributing to a whole-body metabolic improvement.
Collapse
Affiliation(s)
- Victor F Motta
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Brazil.
| | - Thereza L Bargut
- Basic Sciences Department, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, Brazil.
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Brazil.
| | - Marcia B Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Brazil.
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Abstract
One of the biggest challenges in the management of obesity is the prevention of weight regain after successful weight loss. Weight regain after weight loss has large interindividual variation. Although many factors probably contribute to this variation, we hypothesize that variability in biological responses associated with weight loss-induced shrinking of subcutaneous adipocytes has an important role. In this Review, we show that weight loss-induced variations in cellular stress, extracellular matrix remodelling, inflammatory responses, adipokine secretion and lipolysis seem to be associated with the amount of weight that is regained after successful weight loss. Weight regain could therefore, at least in part, depend on a combination of these factors. Further research on the causality of these associations could aid the development of effective strategies to prevent weight regain after successful weight loss.
Collapse
Affiliation(s)
- Marleen A van Baak
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands.
| | - Edwin C M Mariman
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
20
|
Aranaz P, Navarro-Herrera D, Zabala M, Miguéliz I, Romo-Hualde A, López-Yoldi M, Martínez JA, Vizmanos JL, Milagro FI, González-Navarro CJ. Phenolic Compounds Inhibit 3T3-L1 Adipogenesis Depending on the Stage of Differentiation and Their Binding Affinity to PPARγ. Molecules 2019; 24:molecules24061045. [PMID: 30884812 PMCID: PMC6470710 DOI: 10.3390/molecules24061045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Phenolic compounds might modulate adiposity. Here, we report our observation that polyphenols and phenolic acids inhibit adipogenesis in 3T3-L1 with different intensity depending on the family and the stage of differentiation. While quercetin and resveratrol inhibited lipid accumulation along the whole process of differentiation, apigenin and myricetin were active during the early and latest stages, but not intermediate, contrary to hesperidin. The activity of phenolic acids was limited to the early stages of the differentiation process, except p-coumaric and ellagic acids. This anti-adipogenic effect was accompanied by down-regulation of Scd1 and Lpl. Molecular docking analysis revealed that the inhibitory activity of these phenolic compounds over the early stages of adipogenesis exhibits a significant correlation (r = 0.7034; p = 0.005) with their binding affinity to the ligand-binding domain of PPARγ. Results show that polyphenols and phenolic acids would interact with specific residues of the receptor, which could determine their potential anti-adipogenic activity during the early stages of the differentiation. Residues Phe264, His266, Ile281, Cys285 and Met348 are the most frequently involved in these interactions, which might suggest a crucial role for these amino acids modulating the activity of the receptor. These data contribute to elucidate the possible mechanisms of phenolic compounds in the control of adipogenesis.
Collapse
Affiliation(s)
- Paula Aranaz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - David Navarro-Herrera
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - María Zabala
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Itziar Miguéliz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Ana Romo-Hualde
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Miguel López-Yoldi
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - J Alfredo Martínez
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Fermín I Milagro
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | | |
Collapse
|
21
|
Foright RM, Presby DM, Sherk VD, Kahn D, Checkley LA, Giles ED, Bergouignan A, Higgins JA, Jackman MR, Hill JO, MacLean PS. Is regular exercise an effective strategy for weight loss maintenance? Physiol Behav 2018; 188:86-93. [PMID: 29382563 PMCID: PMC5929468 DOI: 10.1016/j.physbeh.2018.01.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/12/2018] [Accepted: 01/26/2018] [Indexed: 01/17/2023]
Abstract
Weight regain after weight loss is one of the most significant challenges to successful obesity treatment. Regular exercise has long been touted as a strategy for weight loss maintenance, but the lack of clear evidence in clinical trials has caused some to question its effectiveness. In this review, we present the arguments both questioning and in support of exercise as an obesity therapeutic. Our purpose is to bring clarity to the literature, present a unified perspective, and identify the gaps in knowledge that need to be addressed in future studies. Critical questions remain including sex differences, individual variability and compensatory behaviors in response to exercise, exercise adherence, the role of energy flux and the molecular mechanisms mediating the beneficial effects of exercise after weight loss and during weight regain. Future research should focus on these critical questions to provide a more complete understanding of the potential benefits of exercise on weight loss maintenance.
Collapse
Affiliation(s)
- R M Foright
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - D M Presby
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - V D Sherk
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - D Kahn
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - L A Checkley
- Coram/CVS Specialty Infusion Services, Denver, United States
| | - E D Giles
- Texas A&M University, Department of Nutrition & Food Science, Denver, United States
| | - A Bergouignan
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Anschutz Center for Health & Wellness, Denver, United States; Universite de Strasbourg, IPHC, Strasbourg, France; CNRS; UMR7178, Strasbourg, France
| | - J A Higgins
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - M R Jackman
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - J O Hill
- Anschutz Center for Health & Wellness, Denver, United States
| | - P S MacLean
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
22
|
A one-year resistance training program following weight loss has no significant impact on body composition and energy expenditure in postmenopausal women living with overweight and obesity. Physiol Behav 2018; 189:99-106. [DOI: 10.1016/j.physbeh.2018.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
|
23
|
Allerton TD, Stephens JM. Operation Damage Control: Exercise Training to Prevent Metabolic Damage from High-Fat Feeding. Obesity (Silver Spring) 2017; 25:1652. [PMID: 28856813 PMCID: PMC5832040 DOI: 10.1002/oby.21974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Timothy D Allerton
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
24
|
Giles ED, Jackman MR, MacLean PS. Modeling Diet-Induced Obesity with Obesity-Prone Rats: Implications for Studies in Females. Front Nutr 2016; 3:50. [PMID: 27933296 PMCID: PMC5121240 DOI: 10.3389/fnut.2016.00050] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/28/2016] [Indexed: 12/03/2022] Open
Abstract
Obesity is a worldwide epidemic, and the comorbidities associated with obesity are numerous. Over the last two decades, we and others have employed an outbred rat model to study the development and persistence of obesity, as well as the metabolic complications that accompany excess weight. In this review, we summarize the strengths and limitations of this model and how it has been applied to further our understanding of human physiology in the context of weight loss and weight regain. We also discuss how the approach has been adapted over time for studies in females and female-specific physiological conditions, such as menopause and breast cancer. As excess weight and the accompanying metabolic complications have become common place in our society, we expect that this model will continue to provide a valuable translational tool to establish physiologically relevant connections to the basic science studies of obesity and body weight regulation.
Collapse
Affiliation(s)
- Erin D Giles
- Department of Nutrition and Food Science, Texas A&M University , College Station, TX , USA
| | - Matthew R Jackman
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul S MacLean
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|