1
|
Gottschalk F, Gennser M, Günther M, Eiken O, Elia A. Eccentric exercise before a 90 min exposure at 24,000 ft increases decompression strain depending on body region but not total muscle mass recruited. Exp Physiol 2024; 109:1517-1528. [PMID: 38923893 PMCID: PMC11363104 DOI: 10.1113/ep091853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Eccentric upper-body exercise performed 24 h prior to high-altitude decompression has previously been shown to aggravate venous gas emboli (VGE) load. Yet, it is unclear whether increasing the muscle mass recruited (i.e., upper vs. whole-body) during eccentric exercise would exacerbate the decompression strain. Accordingly, this study aimed to investigate whether the total muscle mass recruited during eccentric exercise influences the decompression strain. Eleven male participants were exposed to a simulated altitude of 24,000 ft for 90 min on three separate occasions. Twenty-four hours before each exposure, participants performed one of the following protocols: (i) eccentric whole-body exercise (ECCw; squats and arm-cycling exercise), (ii) eccentric upper-body exercise (ECCu; arm-cycling), or (iii) no exercise (control). Delayed onset muscle soreness (DOMS) and isometric strength were evaluated before and after each exercise intervention. VGE load was evaluated at rest and after knee- and arm-flex provocations using the 6-graded Eftedal-Brubakk scale. Knee extensor (-20 ± 14%, P = 0.001) but not elbow flexor (-12 ± 18%, P = 0.152) isometric strength was reduced 24 h after ECCw. ECCu reduced elbow flexor isometric strength at 24 h post-exercise (-18 ± 10%, P < 0.001). Elbow flexor DOMS was higher in the ECCu (median 6) compared with ECCw (5, P = 0.035). VGE scores were higher following arm-flex provocations in the ECCu (median (range), 3 (0-4)) compared with ECCw (2 (0-3), P = 0.039) and control (0 (0-2), P = 0.011), and in ECCw compared with control (P = 0.023). VGE were detected earlier in ECCu (13 ± 20 min) compared with control (60 ± 38 min, P = 0.021), while no differences were noted between ECCw (18 ± 30 min) and control or ECCu. Eccentric exercise increased the decompression strain compared with control. The VGE load varied depending on the body region but not the total muscle mass recruited. HIGHLIGHTS: What is the central question of this study? Does exercise-induced muscle damage (EIMD) resulting from eccentric exercise influence the presence of venous gas emboli (VGE) during a 90 min continuous exposure at 24,000 ft? What is the main finding and its importance? EIMD led to an earlier manifestation and greater VGE load compared with control. However, the decompression strain was dependent on the body region but not the total muscle mass recruited.
Collapse
Affiliation(s)
- Frode Gottschalk
- Division of Environmental PhysiologySwedish Aerospace Physiology CenterKTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Experimental TraumatologyKI Karolinska InstitutetStockholmSweden
| | - Mikael Gennser
- Division of Environmental PhysiologySwedish Aerospace Physiology CenterKTH Royal Institute of TechnologyStockholmSweden
- Department of Physiology and PharmacologyKI Karolinska InstitutetStockholmSweden
| | - Mattias Günther
- Department of Neuroscience, Experimental TraumatologyKI Karolinska InstitutetStockholmSweden
| | - Ola Eiken
- Division of Environmental PhysiologySwedish Aerospace Physiology CenterKTH Royal Institute of TechnologyStockholmSweden
| | - Antonis Elia
- Division of Environmental PhysiologySwedish Aerospace Physiology CenterKTH Royal Institute of TechnologyStockholmSweden
- Department of Physiology and PharmacologyKI Karolinska InstitutetStockholmSweden
| |
Collapse
|
2
|
Imbert JP, Matity L, Massimelli JY, Bryson P. Review of saturation decompression procedures used in commercial diving. Diving Hyperb Med 2024; 54:23-38. [PMID: 38507907 PMCID: PMC11065503 DOI: 10.28920/dhm54.1.23-38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/26/2024] [Indexed: 03/22/2024]
Abstract
Introduction This is a review of commercial heliox saturation decompression procedures. The scope does not include compression, storage depth or bell excursion dive procedures. The objectives are to: identify the sources of the procedures; trace their evolution; describe the current practice; and detect relevant trends. Methods Eleven international commercial diving companies provided their diving manuals for review under a confidentiality agreement. Results Modern commercial diving saturation procedures are derived from a small number of original procedures (United States Navy, Comex, and NORSOK). In the absence of relevant scientific studies since the late 80's, the companies have empirically adapted these procedures according to their needs and experience. Such adaptation has caused differences in decompression rates shallower than 60 msw, decompression rest stops and the decision to decompress linearly or stepwise. Nevertheless, the decompression procedures present a remarkable homogeneity in chamber PO2 and daily decompression rates when deeper than 60 msw. The companies have also developed common rules of good practice; no final decompression should start with an initial ascending excursion; a minimum hold is required before starting a final decompression after an excursion dive. Recommendation is made for the divers to exercise during decompression. Conclusions We observed a trend towards harmonisation within the companies that enforce international procedures, and, between companies through cooperation inside the committees of the industry associations.
Collapse
Affiliation(s)
- Jean-Pierre Imbert
- Divetech, 1543 chemin des vignasses, 06410 Biot, France
- Corresponding author: Jean Pierre Imbert, Divetech, 1543 ch des vignasses 0641Biot, France,
| | - Lyubisa Matity
- Hyperbaric and Tissue Viability Unit, Gozo General Hospital, Malta
| | | | - Philip Bryson
- International SOS, Forest Grove House, Foresterhill Road, Aberdeen, AB25 2ZP, UK
| |
Collapse
|
3
|
Di Pumpo F, Meloni G, Paganini M, Cialoni D, Garetto G, Cipriano A, Giacon TA, Martani L, Camporesi E, Bosco G. Comparison between Arterial Blood Gases and Oxygen Reserve Index™ in a SCUBA Diver: A Case Report. Healthcare (Basel) 2023; 11:healthcare11081102. [PMID: 37107936 PMCID: PMC10138174 DOI: 10.3390/healthcare11081102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Hypoxia and hyperoxia are both worrisome issues potentially affecting SCUBA divers, but validated methods to monitor these two conditions underwater are still lacking. In this experiment, a volunteer SCUBA diver was equipped with a pulse oximeter to detect peripheral oxygen saturation (SpO2) and a device to monitor the oxygen reserve index (ORi™). ORi™ values were compared with arterial blood oxygen saturation (SaO2) and the partial pressure of oxygen (PaO2) obtained from the cannulated right radial artery at three steps: at rest out of water; at -15 m underwater after pedaling on a submerged bike; after resurfacing. SpO2 and ORi™ mirrored the changes in SaO2 and PaO2, confirming the expected hyperoxia at depth. To confirm the potential usefulness of an integrated SpO2 and ORi™ device, further studies are needed on a broader sample with different underwater conditions and diving techniques.
Collapse
Affiliation(s)
- Fabio Di Pumpo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- ComSubIn, Italian Navy, 19025 Varignano-Le Grazie, Italy
| | | | - Matteo Paganini
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Danilo Cialoni
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Alessandro Cipriano
- Emergency Medicine Unit and Emergency Department, Nuovo Santa Chiara Hospital, Azienda Ospedaliero-Universitaria of Pisa, 56126 Pisa, Italy
| | | | - Luca Martani
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Enrico Camporesi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
4
|
Oxidative Stress Response's Kinetics after 60 Minutes at Different (30% or 100%) Normobaric Hyperoxia Exposures. Int J Mol Sci 2022; 24:ijms24010664. [PMID: 36614106 PMCID: PMC9821105 DOI: 10.3390/ijms24010664] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Oxygen is a powerful trigger for cellular reactions and is used in many pathologies, including oxidative stress. However, the effects of oxygen over time and at different partial pressures remain poorly understood. In this study, the metabolic responses of normobaric oxygen intake for 1 h to mild (30%) and high (100%) inspired fractions were investigated. Fourteen healthy non-smoking subjects (7 males and 7 females; age: 29.9 ± 11.1 years, height: 168.2 ± 9.37 cm; weight: 64.4 ± 12.3 kg; BMI: 22.7 ± 4.1) were randomly assigned in the two groups. Blood samples were taken before the intake at 30 min, 2 h, 8 h, 24 h, and 48 h after the single oxygen exposure. The level of oxidation was evaluated by the rate of reactive oxygen species (ROS) and the levels of isoprostane. Antioxidant reactions were observed by total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT). The inflammatory response was measured using interleukin-6 (IL-6), neopterin, creatinine, and urates. Oxidation markers increased from 30 min on to reach a peak at 8 h. From 8 h post intake, the markers of inflammation took over, and more significantly with 100% than with 30%. This study suggests a biphasic response over time characterized by an initial "permissive oxidation" followed by increased inflammation. The antioxidant protection system seems not to be the leading actor in the first place. The kinetics of enzymatic reactions need to be better studied to establish therapeutic, training, or rehabilitation protocols aiming at a more targeted use of oxygen.
Collapse
|
5
|
Varying Oxygen Partial Pressure Elicits Blood-Borne Microparticles Expressing Different Cell-Specific Proteins-Toward a Targeted Use of Oxygen? Int J Mol Sci 2022; 23:ijms23147888. [PMID: 35887238 PMCID: PMC9322965 DOI: 10.3390/ijms23147888] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Oxygen is a powerful trigger for cellular reactions, but there are few comparative investigations assessing the effects over a large range of partial pressures. We investigated a metabolic response to single exposures to either normobaric (10%, 15%, 30%, 100%) or hyperbaric (1.4 ATA, 2.5 ATA) oxygen. Forty-eight healthy subjects (32 males/16 females; age: 43.7 ± 13.4 years, height: 172.7 ± 10.07 cm; weight 68.4 ± 15.7 kg) were randomly assigned, and blood samples were taken before and 2 h after each exposure. Microparticles (MPs) expressing proteins specific to different cells were analyzed, including platelets (CD41), neutrophils (CD66b), endothelial cells (CD146), and microglia (TMEM). Phalloidin binding and thrombospondin-1 (TSP), which are related to neutrophil and platelet activation, respectively, were also analyzed. The responses were found to be different and sometimes opposite. Significant elevations were identified for MPs expressing CD41, CD66b, TMEM, and phalloidin binding in all conditions but for 1.4 ATA, which elicited significant decreases. Few changes were found for CD146 and TSP. Regarding OPB, further investigation is needed to fully understand the future applications of such findings.
Collapse
|
6
|
Lambrechts K, Germonpré P, Vandenheede J, Delorme M, Lafère P, Balestra C. Mini Trampoline, a New and Promising Way of SCUBA Diving Preconditioning to Reduce Vascular Gas Emboli? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5410. [PMID: 35564805 PMCID: PMC9105492 DOI: 10.3390/ijerph19095410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022]
Abstract
Background: Despite evolution in decompression algorithms, decompression illness is still an issue nowadays. Reducing vascular gas emboli (VGE) production or preserving endothelial function by other means such as diving preconditioning is of great interest. Several methods have been tried, either mechanical, cardiovascular, desaturation aimed or biochemical, with encouraging results. In this study, we tested mini trampoline (MT) as a preconditioning strategy. Methods: In total, eight (five females, three males; mean age 36 ± 16 years; body mass index 27.5 ± 7.1 kg/m2) healthy, non-smoking, divers participated. Each diver performed two standardized air dives 1 week apart with and without preconditioning, which consisted of ±2 min of MT jumping. All dives were carried out in a pool (NEMO 33, Brussels, Belgium) at a depth of 25 m for 25 min. VGE counting 30 and 60 min post-dive was recorded by echocardiography together with an assessment of endothelial function by flow-mediated dilation (FMD). Results: VGE were significantly reduced after MT (control: 3.1 ± 4.9 VGE per heartbeat vs. MT: 0.6 ± 1.1 VGE per heartbeat, p = 0.031). Post-dive FMD exhibited a significant decrease in the absence of preconditioning (92.9% ± 7.4 of pre-dive values, p = 0.03), as already described. MT preconditioning prevented this FMD decrease (103.3% ± 7.1 of pre-dive values, p = 0.30). FMD difference is significant (p = 0.03). Conclusions: In our experience, MT seems to be a very good preconditioning method to reduce VGE and endothelial changes. It may become the easiest, cheapest and more efficient preconditioning for SCUBA diving.
Collapse
Affiliation(s)
- Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Centre for Hyperbaric Oxygen Therapy, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Joaquim Vandenheede
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Manon Delorme
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Laboratoire ORPHY, EA4324, Université de Bretagne Occidentale (UBO), 29238 Brest, France
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
7
|
Levenez M, Lambrechts K, Mrakic-Sposta S, Vezzoli A, Germonpré P, Pique H, Virgili F, Bosco G, Lafère P, Balestra C. Full-Face Mask Use during SCUBA Diving Counters Related Oxidative Stress and Endothelial Dysfunction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020965. [PMID: 35055791 PMCID: PMC8776018 DOI: 10.3390/ijerph19020965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/29/2022]
Abstract
Impaired flow mediated dilation (FMD), an index of vascular stress, is known after SCUBA diving. This is related to a dysfunction of nitric oxide (NO) availability and a disturbance of the redox status, possibly induced by hyperoxic/hyperbaric gas breathing. SCUBA diving is usually performed with a mask only covering “half face” (HF) and therefore forcing oral breathing. Nasal NO production is involved in vascular homeostasis and, as consequence, can significantly reduce NO possibly promoting vascular dysfunction. More recently, the utilization of “full-face” (FF) mask, allowing nasal breathing, became more frequent, but no reports are available describing their effects on vascular functions in comparison with HF masks. In this study we assessed and compared the effects of a standard shallow dive (20 min at 10 m) wearing either FF or a HF mask on different markers of vascular function (FMD), oxidative stress (ROS, 8-iso-PGF2α) and NO availability and metabolism (NO2, NOx and 3-NT and iNOS expression). Data from a dive breathing a hypoxic (16% O2 at depth) gas mixture with HF mask are shown allowing hyperoxic/hypoxic exposure. Our data suggest that nasal breathing might significantly reduce the occurrence of vascular dysfunction possibly due to better maintenance of NO production and bioavailability, resulting in a better ability to counter reactive oxygen and nitrogen species. Besides the obvious outcomes in terms of SCUBA diving safety, our data permit a better understanding of the effects of oxygen concentrations, either in normal conditions or as a strategy to induce selected responses in health and disease.
Collapse
Affiliation(s)
- Morgan Levenez
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
| | - Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 20162 Milano, Italy; (S.M.-S.); (A.V.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 20162 Milano, Italy; (S.M.-S.); (A.V.)
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
- Hyperbaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium
- DAN Europe Research Division, Contrada Padune, 64026 Roseto, Italy
| | - Hadrien Pique
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
| | - Fabio Virgili
- Council for Agricultural Research and Economics—Food and Nutrition Research Centre (CREA-AN), Via Ardeatina 548, 00187 Rome, Italy
- Correspondence: (F.V.); (C.B.)
| | - Gerardo Bosco
- Environmental Physiology & Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy;
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
- DAN Europe Research Division, Contrada Padune, 64026 Roseto, Italy
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
- DAN Europe Research Division, Contrada Padune, 64026 Roseto, Italy
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Correspondence: (F.V.); (C.B.)
| |
Collapse
|
8
|
Balestra C, Guerrero F, Theunissen S, Germonpré P, Lafère P. Physiology of repeated mixed gas 100-m wreck dives using a closed-circuit rebreather: a field bubble study. Eur J Appl Physiol 2021; 122:515-522. [PMID: 34839432 PMCID: PMC8627581 DOI: 10.1007/s00421-021-04856-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/19/2021] [Indexed: 10/25/2022]
Abstract
PURPOSE Data regarding decompression stress after deep closed-circuit rebreather (CCR) dives are scarce. This study aimed to monitor technical divers during a wreck diving expedition and provide an insight in venous gas emboli (VGE) dynamics. METHODS Diving practices of ten technical divers were observed. They performed a series of three consecutive daily dives around 100 m. VGE counts were measured 30 and 60 min after surfacing by both cardiac echography and subclavian Doppler graded according to categorical scores (Eftedal-Brubakk and Spencer scale, respectively) that were converted to simplified bubble grading system (BGS) for the purpose of analysis. Total body weight and fluids shift using bioimpedancemetry were also collected pre- and post-dive. RESULTS Depth-time profiles of the 30 recorded man-dives were 97.3 ± 26.4 msw [range: 54-136] with a runtime of 160 ± 65 min [range: 59-270]. No clinical decompression sickness (DCS) was detected. The echographic frame-based bubble count par cardiac cycle was 14 ± 13 at 30 min and 13 ± 13 at 60 min. There is no statistical difference neither between dives, nor between time of measurements (P = 0.07). However, regardless of the level of conservatism used, a high incidence of high-grade VGE was detected. Doppler recordings with the O'dive were highly correlated with echographic recordings (Spearman r of 0.81, P = 0.008). CONCLUSION Although preliminary, the present observation related to real CCR deep dives questions the precedence of decompression algorithm over individual risk factors and pleads for an individual approach of decompression.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium.,Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.,DAN Europe Research Department, Brussels, Belgium
| | - François Guerrero
- Laboratoire ORPHY, EA 4324, Université de Bretagne Occidentale, Brest, France
| | - Sigrid Theunissen
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium
| | - Peter Germonpré
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium.,Centre for Hyperbaric Oxygen Therapy, Military Hospital Queen Astrid, Brussels, Belgium.,DAN Europe Research Department, Brussels, Belgium
| | - Pierre Lafère
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium. .,Centre for Hyperbaric Oxygen Therapy, Military Hospital Queen Astrid, Brussels, Belgium. .,Laboratoire ORPHY, EA 4324, Université de Bretagne Occidentale, Brest, France. .,DAN Europe Research Department, Brussels, Belgium.
| |
Collapse
|
9
|
Effect of Water Amount Intake before Scuba Diving on the Risk of Decompression Sickness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147601. [PMID: 34300051 PMCID: PMC8306992 DOI: 10.3390/ijerph18147601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
Background and objective: The aim of this study was to investigate the influence of pre-hydration levels on circulating bubble formation for scuba divers and to evaluate the appropriate volume of water intake for reducing the risk of decompression sickness (DCS). Materials and Methods: Twenty scuba divers were classified into four groups according to the volume of water taken in before scuba diving as follows: no-water-intake group (NWIG), 30%-water-intake group (30WIG), 50%-water intake group (50WIG), and 100%-water-intake group (100WIG). We measured the circulating bubbles using movement status by Doppler on the right and left subclavian veins and precordial regions at pre-dive, post-dive, and 30 min after diving to a depth of 30 m for a duration of 25 min at the bottom. Results: Participants belonging to the 30WIG showed the lowest frequency, percentage, and amplitude of bubbles and consequently the lowest bubble grade in the left and right subclavian veins and precordial region at post-time and 30 min after diving. Conclusions: It can be inferred that pre-hydration with 30% of the recommended daily water intake before scuba diving effectively suppressed the formation of bubbles after diving and decreased the risk of DCS.
Collapse
|
10
|
Imbert JP, Egi SM, Germonpré P, Balestra C. Static Metabolic Bubbles as Precursors of Vascular Gas Emboli During Divers' Decompression: A Hypothesis Explaining Bubbling Variability. Front Physiol 2019; 10:807. [PMID: 31354506 PMCID: PMC6638188 DOI: 10.3389/fphys.2019.00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction The risk for decompression sickness (DCS) after hyperbaric exposures (such as SCUBA diving) has been linked to the presence and quantity of vascular gas emboli (VGE) after surfacing from the dive. These VGE can be semi-quantified by ultrasound Doppler and quantified via precordial echocardiography. However, for an identical dive, VGE monitoring of divers shows variations related to individual susceptibility, and, for a same diver, dive-to-dive variations which may be influenced by pre-dive pre-conditioning. These variations are not explained by currently used algorithms. In this paper, we present a new hypothesis: individual metabolic processes, through the oxygen window (OW) or Inherent Unsaturation of tissues, modulate the presence and volume of static metabolic bubbles (SMB) that in turn act as precursors of circulating VGE after a dive. Methods We derive a coherent system of assumptions to describe static gas bubbles, located on the vessel endothelium at hydrophobic sites, that would be activated during decompression and become the source of VGE. We first refer to the OW and show that it creates a local tissue unsaturation that can generate and stabilize static gas phases in the diver at the surface. We then use Non-extensive thermodynamics to derive an equilibrium equation that avoids any geometrical description. The final equation links the SMB volume directly to the metabolism. Results and Discussion Our model introduces a stable population of small gas pockets of an intermediate size between the nanobubbles nucleating on the active sites and the VGE detected in the venous blood. The resulting equation, when checked against our own previously published data and the relevant scientific literature, supports both individual variation and the induced differences observed in pre-conditioning experiments. It also explains the variability in VGE counts based on age, fitness, type and frequency of physical activities. Finally, it fits into the general scheme of the arterial bubble assumption for the description of the DCS risk. Conclusion Metabolism characterization of the pre-dive SMB population opens new possibilities for decompression algorithms by considering the diver's individual susceptibility and recent history (life style, exercise) to predict the level of VGE during and after decompression.
Collapse
Affiliation(s)
| | - Salih Murat Egi
- Department of Computer Engineering, Galatasaray University, Istanbul, Turkey.,DAN Europe Research Division, Divers Alert Network (DAN), Roseto, Italy
| | - Peter Germonpré
- DAN Europe Research Division, Divers Alert Network (DAN), Roseto, Italy.,Centre for Hyperbaric Oxygen Therapy, Military Hospital Brussels, Brussels, Belgium
| | - Costantino Balestra
- DAN Europe Research Division, Divers Alert Network (DAN), Roseto, Italy.,Environmental, Occupational and Ageing Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
| |
Collapse
|
11
|
Blake DF, Crowe M, Mitchell SJ, Aitken P, Pollock NW. Vibration and bubbles: a systematic review of the effects of helicopter retrieval on injured divers. Diving Hyperb Med 2019; 48:235-240. [PMID: 30517957 DOI: 10.28920/dhm48.4.241-251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/02/2018] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Vibration from a helicopter during aeromedical retrieval of divers may increase venous gas emboli (VGE) production, evolution or distribution, potentially worsening the patient's condition. AIM To review the literature surrounding the helicopter transport of injured divers and establish if vibration contributes to increased VGE. METHOD A systematic literature search of key databases was conducted to identify articles investigating vibration and bubbles during helicopter retrieval of divers. Level of evidence was graded using the Oxford Centre for Evidence-Based Medicine guidelines. A modified quality assessment tool for studies with diverse designs (QATSDD) was used to assess the overall quality of evidence. RESULTS Seven studies were included in the review. An in vitro research paper provided some evidence of bubble formation with gas supersaturation and vibration. Only one prospective intervention study was identified which examined the effect of vibration on VGE formation. Bubble duration was used to quantify VGE load with no difference found between the vibration and non-vibration time periods. This study was published in 1980 and technological advances since that time suggest cautious interpretation of the results. The remaining studies were retrospective chart reviews of helicopter retrieval of divers. Mode of transport, altitude exposure, oxygen and intravenous fluids use were examined. CONCLUSION There is some physical evidence that vibration leads to bubble formation although there is a paucity of research on the specific effects of helicopter vibration and VGE in divers. Technological advances have led to improved assessment of VGE in divers and will aid in further research.
Collapse
Affiliation(s)
- Denise F Blake
- Emergency Department, The Townsville Hospital, Townsville, Queensland, Australia.,Marine Biology and Aquaculture, James Cook University, Townsville.,Corresponding author: IMB 23, Emergency Department, 100 Angus Smith Drive, The Townsville Hospital, Douglas, Queensland, Australia, 4814,
| | - Melissa Crowe
- Discipline of Sport and Exercise Science, James Cook University, Townsville
| | - Simon J Mitchell
- Department of Anaesthesiology, University of Auckland, Auckland, New Zealand
| | - Peter Aitken
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville.,Health Disaster Management Unit, Queensland Health, Brisbane, Queensland
| | - Neal W Pollock
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Service de médecine hyperbare, Centre de médecine de plongée du Québec, Levis, Québec
| |
Collapse
|
12
|
Variability in circulating gas emboli after a same scuba diving exposure. Eur J Appl Physiol 2018; 118:1255-1264. [DOI: 10.1007/s00421-018-3854-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
|
13
|
Cialoni D, Pieri M, Balestra C, Marroni A. Dive Risk Factors, Gas Bubble Formation, and Decompression Illness in Recreational SCUBA Diving: Analysis of DAN Europe DSL Data Base. Front Psychol 2017; 8:1587. [PMID: 28974936 PMCID: PMC5610843 DOI: 10.3389/fpsyg.2017.01587] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/30/2017] [Indexed: 12/02/2022] Open
Abstract
Introduction: The popularity of SCUBA diving is steadily increasing together with the number of dives and correlated diseases per year. The rules that govern correct decompression procedures are considered well known even if the majority of Decompression Sickness (DCS) cases are considered unexpected confirming a bias in the “mathematical ability” to predict DCS by the current algorithms. Furthermore, little is still known about diving risk factors and any individual predisposition to DCS. This study provides an in-depth epidemiological analysis of the diving community, to include additional risk factors correlated with the development of circulating bubbles and DCS. Materials and Methods: An originally developed database (DAN DB) including specific questionnaires for data collection allowed the statistical analysis of 39,099 electronically recorded open circuit dives made by 2,629 European divers (2,189 males 83.3%, 440 females 16.7%) over 5 years. The same dive parameters and risk factors were investigated also in 970 out of the 39,099 collected dives investigated for bubble formation, by 1-min precordial Doppler, and in 320 sea-level dives followed by DCS symptoms. Results: Mean depth and GF high of all the recorded dives were 27.1 m, and 0.66, respectively; the average ascent speed was lower than the currently recommended “safe” one (9–10 m/min). We found statistically significant relationships between higher bubble grades and BMI, fat mass, age, and diving exposure. Regarding incidence of DCS, we identified additional non-bubble related risk factors, which appear significantly related to a higher DCS incidence, namely: gender, strong current, heavy exercise, and workload during diving. We found that the majority of the recorded DCS cases were not predicted by the adopted decompression algorithm and would have therefore been defined as “undeserved.” Conclusion: The DAN DB analysis shows that most dives were made in a “safe zone,” even if data show an evident “gray area” in the “mathematical” ability to predict DCS by the current algorithms. Some other risk factors seem to influence the possibility to develop DCS, irrespective of their effect on bubble formation, thus suggesting the existence of some factors influencing or enhancing the effects of bubbles.
Collapse
Affiliation(s)
- Danilo Cialoni
- DAN Europe Research Division, DAN Europe FoundationRoseto degli Abruzzi, Italy
| | - Massimo Pieri
- DAN Europe Research Division, DAN Europe FoundationRoseto degli Abruzzi, Italy
| | - Costantino Balestra
- DAN Europe Research Division, DAN Europe FoundationRoseto degli Abruzzi, Italy.,Environmental, Occupational and Ageing (Integrative) Physiology Lab, Haute Ecole Bruxelles-BrabantBrussels, Belgium
| | - Alessandro Marroni
- DAN Europe Research Division, DAN Europe FoundationRoseto degli Abruzzi, Italy
| |
Collapse
|
14
|
Arieli R. Nanobubbles Form at Active Hydrophobic Spots on the Luminal Aspect of Blood Vessels: Consequences for Decompression Illness in Diving and Possible Implications for Autoimmune Disease-An Overview. Front Physiol 2017; 8:591. [PMID: 28861003 PMCID: PMC5559548 DOI: 10.3389/fphys.2017.00591] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023] Open
Abstract
Decompression illness (DCI) occurs following a reduction in ambient pressure. Decompression bubbles can expand and develop only from pre-existing gas micronuclei. The different hypotheses hitherto proposed regarding the nucleation and stabilization of gas micronuclei have never been validated. It is known that nanobubbles form spontaneously when a smooth hydrophobic surface is submerged in water containing dissolved gas. These nanobubbles may be the long sought-after gas micronuclei underlying decompression bubbles and DCI. We exposed hydrophobic and hydrophilic silicon wafers under water to hyperbaric pressure. After decompression, bubbles appeared on the hydrophobic but not the hydrophilic wafers. In a further series of experiments, we placed large ovine blood vessels in a cooled high pressure chamber at 1,000 kPa for about 20 h. Bubbles evolved at definite spots in all the types of blood vessels. These bubble-producing spots stained positive for lipids, and were henceforth termed “active hydrophobic spots” (AHS). The lung surfactant dipalmitoylphosphatidylcholine (DPPC), was found both in the plasma of the sheep and at the AHS. Bubbles detached from the blood vessel in pulsatile flow after reaching a mean diameter of ~1.0 mm. Bubble expansion was bi-phasic—a slow initiation phase which peaked 45 min after decompression, followed by fast diffusion-controlled growth. Many features of decompression from diving correlate with this finding of AHS on the blood vessels. (1) Variability between bubblers and non-bubblers. (2) An age-related effect and adaptation. (3) The increased risk of DCI on a second dive. (4) Symptoms of neurologic decompression sickness. (5) Preconditioning before a dive. (6) A bi-phasic mechanism of bubble expansion. (7) Increased bubble formation with depth. (8) Endothelial injury. (9) The presence of endothelial microparticles. Finally, constant contact between nanobubbles and plasma may result in distortion of proteins and their transformation into autoantigens.
Collapse
Affiliation(s)
- Ran Arieli
- Israel Naval Medical Institute, Israel Defence ForceHaifa, Israel.,Eliachar Research Laboratory, Western Galilee Medical CenterNahariya, Israel
| |
Collapse
|
15
|
Venous gas emboli are involved in post-dive macro, but not microvascular dysfunction. Eur J Appl Physiol 2017; 117:335-344. [DOI: 10.1007/s00421-017-3537-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|