1
|
Niu YH, Guan LH, Wang C, Jiang HF, Li GG, Yang LD, He SP. Comparative transcriptomic evidence of physiological changes and potential relationships in vertebrates under different dormancy states. Zool Res 2024; 45:341-354. [PMID: 38485504 PMCID: PMC11017076 DOI: 10.24272/j.issn.2095-8137.2023.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 03/19/2024] Open
Abstract
Dormancy represents a fascinating adaptive strategy for organisms to survive in unforgiving environments. After a period of dormancy, organisms often exhibit exceptional resilience. This period is typically divided into hibernation and aestivation based on seasonal patterns. However, the mechanisms by which organisms adapt to their environments during dormancy, as well as the potential relationships between different states of dormancy, deserve further exploration. Here, we selected Perccottus glenii and Protopterus annectens as the primary subjects to study hibernation and aestivation, respectively. Based on histological and transcriptomic analysis of multiple organs, we discovered that dormancy involved a coordinated functional response across organs. Enrichment analyses revealed noteworthy disparities between the two dormant species in their responses to extreme temperatures. Notably, similarities in gene expression patterns pertaining to energy metabolism, neural activity, and biosynthesis were noted during hibernation, suggesting a potential correlation between hibernation and aestivation. To further explore the relationship between these two phenomena, we analyzed other dormancy-capable species using data from publicly available databases. This comparative analysis revealed that most orthologous genes involved in metabolism, cell proliferation, and neural function exhibited consistent expression patterns during dormancy, indicating that the observed similarity between hibernation and aestivation may be attributable to convergent evolution. In conclusion, this study enhances our comprehension of the dormancy phenomenon and offers new insights into the molecular mechanisms underpinning vertebrate dormancy.
Collapse
Affiliation(s)
- Yu-Han Niu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, Qinghai Normal University, Xining, Qinghai 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai 810016, China
| | - Li-Hong Guan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Hai-Feng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Guo-Gang Li
- College of Life Sciences, Qinghai Normal University, Xining, Qinghai 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai 810016, China
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, Qinghai 810008, China. E-mail:
| | - Lian-Dong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai 810016, China. E-mail:
| | - Shun-Ping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai 810016, China. E-mail:
| |
Collapse
|
2
|
Jiang C, Storey KB, Yang H, Sun L. Aestivation in Nature: Physiological Strategies and Evolutionary Adaptations in Hypometabolic States. Int J Mol Sci 2023; 24:14093. [PMID: 37762394 PMCID: PMC10531719 DOI: 10.3390/ijms241814093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Aestivation is considered to be one of the "purest" hypometabolic states in nature, as it involves aerobic dormancy that can be induced and sustained without complex factors. Animals that undergo aestivation to protect themselves from environmental stressors such as high temperatures, droughts, and food shortages. However, this shift in body metabolism presents new challenges for survival, including oxidative stress upon awakening from aestivation, accumulation of toxic metabolites, changes in energy sources, adjustments to immune status, muscle atrophy due to prolonged immobility, and degeneration of internal organs due to prolonged food deprivation. In this review, we summarize the physiological and metabolic strategies, key regulatory factors, and networks utilized by aestivating animals to address the aforementioned components of aestivation. Furthermore, we present a comprehensive overview of the advancements made in aestivation research across major species, including amphibians, fish, reptiles, annelids, mollusks, and echinoderms, categorized according to their respective evolutionary positions. This approach offers a distinct perspective for comparative analysis, facilitating an understanding of the shared traits and unique features of aestivation across different groups of organisms.
Collapse
Affiliation(s)
- Chunxi Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhang R, Liu Q, Pan S, Zhang Y, Qin Y, Du X, Yuan Z, Lu Y, Song Y, Zhang M, Zhang N, Ma J, Zhang Z, Jia X, Wang K, He S, Liu S, Ni M, Liu X, Xu X, Yang H, Wang J, Seim I, Fan G. A single-cell atlas of West African lungfish respiratory system reveals evolutionary adaptations to terrestrialization. Nat Commun 2023; 14:5630. [PMID: 37699889 PMCID: PMC10497629 DOI: 10.1038/s41467-023-41309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
The six species of lungfish possess both lungs and gills and are the closest extant relatives of tetrapods. Here, we report a single-cell transcriptome atlas of the West African lungfish (Protopterus annectens). This species manifests the most extreme form of terrestrialization, a life history strategy to survive dry periods that can last for years, characterized by dormancy and reversible adaptive changes of the gills and lungs. Our atlas highlights the cell type diversity of the West African lungfish, including gene expression consistent with phenotype changes of terrestrialization. Comparison with terrestrial tetrapods and ray-finned fishes reveals broad homology between the swim bladder and lung cell types as well as shared and idiosyncratic changes of the external gills of the West African lungfish and the internal gills of Atlantic salmon. The single-cell atlas presented here provides a valuable resource for further exploration of the respiratory system evolution in vertebrates and the diversity of lungfish terrestrialization.
Collapse
Affiliation(s)
- Ruihua Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Qun Liu
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Shanshan Pan
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yingying Zhang
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yating Qin
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Xiao Du
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
- BGI Research, 518083, Shenzhen, China
| | - Zengbao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yongrui Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Yue Song
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | | | - Nannan Zhang
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Jie Ma
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | | | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, 252000, Liaocheng, Shandong, P.R. China
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Shanshan Liu
- BGI Research, 518083, Shenzhen, China
- MGI Tech, 518083, Shenzhen, China
| | - Ming Ni
- BGI Research, 518083, Shenzhen, China
- MGI Tech, 518083, Shenzhen, China
| | - Xin Liu
- BGI Research, 518083, Shenzhen, China
| | - Xun Xu
- BGI Research, 518083, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, 518083, Shenzhen, China
| | | | - Jian Wang
- BGI Research, 518083, Shenzhen, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia.
| | - Guangyi Fan
- BGI Research, 266555, Qingdao, China.
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China.
- BGI Research, 518083, Shenzhen, China.
| |
Collapse
|
4
|
Venkataraman K, Shai N, Lakhiani P, Zylka S, Zhao J, Herre M, Zeng J, Neal LA, Molina H, Zhao L, Vosshall LB. Two novel, tightly linked, and rapidly evolving genes underlie Aedes aegypti mosquito reproductive resilience during drought. eLife 2023; 12:e80489. [PMID: 36744865 PMCID: PMC10076016 DOI: 10.7554/elife.80489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 01/29/2023] [Indexed: 02/07/2023] Open
Abstract
Female Aedes aegypti mosquitoes impose a severe global public health burden as vectors of multiple viral pathogens. Under optimal environmental conditions, Aedes aegypti females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, Aedes aegypti females are faced with climate challenges like intense droughts and intermittent precipitation, which create unpredictable, suboptimal conditions for egg-laying. Here, we show that under drought-like conditions simulated in the laboratory, females retain mature eggs in their ovaries for extended periods, while maintaining the viability of these eggs until they can be laid in freshwater. Using transcriptomic and proteomic profiling of Aedes aegypti ovaries, we identify two previously uncharacterized genes named tweedledee and tweedledum, each encoding a small, secreted protein that both show ovary-enriched, temporally-restricted expression during egg retention. These genes are mosquito-specific, linked within a syntenic locus, and rapidly evolving under positive selection, raising the possibility that they serve an adaptive function. CRISPR-Cas9 deletion of both tweedledee and tweedledum demonstrates that they are specifically required for extended retention of viable eggs. These results highlight an elegant example of taxon-restricted genes at the heart of an important adaptation that equips Aedes aegypti females with 'insurance' to flexibly extend their reproductive schedule without losing reproductive capacity, thus allowing this species to exploit unpredictable habitats in a changing world.
Collapse
Affiliation(s)
- Krithika Venkataraman
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Nadav Shai
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Priyanka Lakhiani
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller UniversityNew YorkUnited States
| | - Sarah Zylka
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Jieqing Zhao
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Margaret Herre
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| | - Joshua Zeng
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Lauren A Neal
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Henrik Molina
- Proteomics Resource Center, Rockefeller UniversityNew YorkUnited States
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller UniversityNew YorkUnited States
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| |
Collapse
|
5
|
Niu Y, Guan L, Wang C, Jiang H, Li G, Yang L. Aestivation induces widespread transcriptional changes in the African lungfish. Front Genet 2023; 14:1096929. [PMID: 36733343 PMCID: PMC9886888 DOI: 10.3389/fgene.2023.1096929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Aestivation is a special ability possessed by some animals to cope with hot and dry environments utilizing dormancy. At a macroscopic level, dormant animals stop moving and eating. At the microscopic level, the expression of a large number of genes in these animals is strictly controlled. However, little is known about what changes occur during aestivation, especially in fish. In this study, we used transcriptome analysis to examine what changes occur in the gills and lungs of the African lungfish (Protopterus annectens) during the maintenance phase of aestivation and speculated on their causes. We found that aestivating transcriptomes were highly similar between gills and lungs. We also found that some genes showed differential expression or alternative splicing, which may be associated with different organs. In addition, differential expression analysis revealed that the lungs maintained significantly higher bioactivity during aestivation, which suggests that the main respiratory organ in aestivating lungfish can transform. Our study provides a reference point for studying the relationship between aestivation and hibernation and further increases understanding of aestivation.
Collapse
Affiliation(s)
- Yuhan Niu
- College of Life Sciences, Qinghai Normal University, Xining, Qinghai, China,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Lihong Guan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haifeng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guogang Li
- College of Life Sciences, Qinghai Normal University, Xining, Qinghai, China,Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China,Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, China,*Correspondence: Guogang Li, ; Liandong Yang,
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China,*Correspondence: Guogang Li, ; Liandong Yang,
| |
Collapse
|
6
|
Minegishi S, Luft FC, Titze J, Kitada K. Sodium Handling and Interaction in Numerous Organs. Am J Hypertens 2020; 33:687-694. [PMID: 32198504 DOI: 10.1093/ajh/hpaa049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/27/2022] Open
Abstract
Salt (NaCl) is a prerequisite for life. Excessive intake of salt, however, is said to increase disease risk, including hypertension, arteriosclerosis, heart failure, renal disease, stroke, and cancer. Therefore, considerable research has been expended on the mechanism of sodium handling based on the current concepts of sodium balance. The studies have necessarily relied on relatively short-term experiments and focused on extremes of salt intake in humans. Ultra-long-term salt balance has received far less attention. We performed long-term salt balance studies at intakes of 6, 9, and 12 g/day and found that although the kidney remains the long-term excretory gate, tissue and plasma sodium concentrations are not necessarily the same and that urinary salt excretion does not necessarily reflect total-body salt content. We found that to excrete salt, the body makes a great effort to conserve water, resulting in a natriuretic-ureotelic principle of salt excretion. Of note, renal sodium handling is characterized by osmolyte excretion with anti-parallel water reabsorption, a state-of-affairs that is achieved through the interaction of multiple organs. In this review, we discuss novel sodium and water balance concepts in reference to our ultra-long-term study. An important key to understanding body sodium metabolism is to focus on water conservation, a biological principle to protect from dehydration, since excess dietary salt excretion into the urine predisposes to renal water loss because of natriuresis. We believe that our research direction is relevant not only to salt balance but also to cardiovascular regulatory mechanisms.
Collapse
Affiliation(s)
- Shintaro Minegishi
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Friedrich C Luft
- Experimental & Clinical Research Center, a joint collaboration between Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin, Berlin, Germany
| | - Jens Titze
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Nephrology and Hypertension, University Clinic Erlangen, Erlangen, Germany
| | - Kento Kitada
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
7
|
Abstract
During water-land transition, ancient fishes acquired the ability to breathe air, but air-breathing engendered problems in nitrogenous waste excretion. Nitrogen is a fundamental component of amino acids, proteins, and nucleic acids, and the degradation of these nitrogen-containing compounds releases ammonia. Ammonia is toxic and must be removed. Fishes in water excrete ammonia as the major nitrogenous waste through gills, but gills of air-breathing fishes are modified for air-breathing or largely replaced by air-breathing organs. Notably, fishes emerged from water can no longer excrete ammonia effectively because of a lack of water to flush the gills. Hence, ancient fishes that participated in water-land transition must have developed means to deal with ammonia toxicity. Extant air-breathing fishes, particularly amphibious ones, can serve as models to examine adaptations which might have facilitated the emergence of ancient fishes from water. Some of these fishes can actively emerge from water and display complex behaviors on land, while a few can burrow into mud and survive for years during drought. Many of them are equipped with mechanisms to ameliorate ammonia toxicity during emersion. In this review, the mechanisms adopted by air-breathing fishes to deal with ammonia toxicity during emersion were organized into seven disparate strategies. In addition, eight extant air-breathing fishes with distinctive terrestrial behaviors and peculiar natural habitats were selected to describe in detail how these seven strategies could be adopted in disparate combinations to ameliorate ammonia toxicity during emersion.
Collapse
|
8
|
Heimroth RD, Casadei E, Salinas I. Effects of Experimental Terrestrialization on the Skin Mucus Proteome of African Lungfish ( Protopterus dolloi). Front Immunol 2018; 9:1259. [PMID: 29915597 PMCID: PMC5994560 DOI: 10.3389/fimmu.2018.01259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/18/2018] [Indexed: 11/13/2022] Open
Abstract
Animal mucosal barriers constantly interact with the external environment, and this interaction is markedly different in aquatic and terrestrial environments. Transitioning from water to land was a critical step in vertebrate evolution, but the immune adaptations that mucosal barriers such as the skin underwent during that process are essentially unknown. Vertebrate animals such as the African lungfish have a bimodal life, switching from freshwater to terrestrial habitats when environmental conditions are not favorable. African lungfish skin mucus secretions contribute to the terrestrialization process by forming a cocoon that surrounds and protects the lungfish body. The goal of this study was to characterize the skin mucus immunoproteome of African lungfish, Protopterus dolloi, before and during the induction phase of terrestrialization as well as the immunoproteome of the gill mucus during the terrestrialization induction phase. Using LC-MS/MS, we identified a total of 974 proteins using a lungfish Illumina RNA-seq database, 1,256 proteins from previously published lungfish sequence read archive and 880 proteins using a lungfish 454 RNA-seq database for annotation in the three samples analyzed (free-swimming skin mucus, terrestrialized skin mucus, and terrestrialized gill mucus). The terrestrialized skin mucus proteome was enriched in proteins with known antimicrobial functions such as histones and S100 proteins compared to free-swimming skin mucus. In support, gene ontology analyses showed that the terrestrialized skin mucus proteome has predicted functions in processes such as viral process, defense response to Gram-negative bacterium, and tumor necrosis factor-mediated signaling. Importantly, we observed a switch in immunoglobulin heavy chain secretion upon terrestrialization, with IgW1 long form (IgW1L) and IgM1 present in free-swimming skin mucus and IgW1L, IgM1, and IgM2 in terrestrialized skin mucus. Combined, these results indicate an increase in investment in the production of unique immune molecules in P. dolloi skin mucus in response to terrestrialization that likely better protects lungfish against external aggressors found in land.
Collapse
Affiliation(s)
| | | | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
9
|
Chng YR, Ong JLY, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Lam SH, Ip YK. Molecular characterization of three Rhesus glycoproteins from the gills of the African lungfish, Protopterus annectens, and effects of aestivation on their mRNA expression levels and protein abundance. PLoS One 2017; 12:e0185814. [PMID: 29073147 PMCID: PMC5657625 DOI: 10.1371/journal.pone.0185814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/20/2017] [Indexed: 11/19/2022] Open
Abstract
African lungfishes are ammonotelic in water. They can aestivate for long periods on land during drought. During aestivation, the gills are covered with dried mucus and ammonia excretion ceases. In fishes, ammonia excretion through the gills involves Rhesus glycoproteins (RhGP/Rhgp). This study aimed to obtain the complete cDNA coding sequences of rhgp from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Three isoforms of rhgp (rhag, rhbg and rhcg) were obtained in the gills of P. annectens. Their complete cDNA coding sequences ranged between 1311 and 1398 bp, coding for 436 to 465 amino acids with estimated molecular masses between 46.8 and 50.9 kDa. Dendrogramic analyses indicated that Rhag was grouped closer to fishes, while Rhbg and Rhcg were grouped closer to tetrapods. During the induction phase, the protein abundance of Rhag, but not its transcript level, was down-regulated in the gills, suggesting that there could be a decrease in the release of ammonia from the erythrocytes to the plasma. Furthermore, the branchial transcript levels of rhbg and rhcg decreased significantly, in preparation for the subsequent shutdown of gill functions. During the maintenance phase, the branchial expression levels of rhag/Rhag, rhbg/Rhbg and rhcg/Rhcg decreased significantly, indicating that their transcription and translation were down-regulated. This could be part of an overall mechanism to shut down branchial functions and save metabolic energy used for transcription and translation. It could also be regarded as an adaptive response to stop ammonia excretion. During the arousal phase, it is essential for the lungfish to regain the ability to excrete ammonia. Indeed, the protein abundance of Rhag, Rhbg and Rhcg recovered to the corresponding control levels after 1 day or 3 days of recovery from 6 months of aestivation.
Collapse
Affiliation(s)
- You R. Chng
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xiu L. Chen
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|