1
|
Tadepalli K, Das A, Meena T, Roy S. Bridging gaps in artificial intelligence adoption for maternal-fetal and obstetric care: Unveiling transformative capabilities and challenges. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 263:108682. [PMID: 40023965 DOI: 10.1016/j.cmpb.2025.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE This review aims to comprehensively explore the application of Artificial Intelligence (AI) to an area that has not been traditionally explored in depth: the continuum of maternal-fetal health. In doing so, the intent was to examine this physiologically continuous spectrum of mother and child health, as well as to highlight potential pitfalls, and suggest solutions for the same. METHOD A systematic search identified studies employing AI techniques for prediction, diagnosis, and decision support employing various modalities like imaging, electrophysiological signals and electronic health records in the domain of obstetrics and fetal health. In the selected articles then, AI applications in fetal morphology, gestational age assessment, congenital defect detection, fetal monitoring, placental analysis, and maternal physiological monitoring were critically examined both from the perspective of the domain and artificial intelligence. RESULT AI-driven solutions demonstrate promising capabilities in medical diagnostics and risk prediction, offering automation, improved accuracy, and the potential for personalized medicine. However, challenges regarding data availability, algorithmic transparency, and ethical considerations must be overcome to ensure responsible and effective clinical implementation. These challenges must be urgently addressed to ensure a domain as critical to public health as obstetrics and fetal health, is able to fully benefit from the gigantic strides made in the field of artificial intelligence. CONCLUSION Open access to relevant datasets is crucial for equitable progress in this critical public health domain. Integrating responsible and explainable AI, while addressing ethical considerations, is essential to maximize the public health benefits of AI-driven solutions in maternal-fetal care.
Collapse
Affiliation(s)
- Kalyan Tadepalli
- Sir HN Reliance Foundation Hospital, Girgaon, Mumbai, 400004, India; Artificial Intelligence & Data Science, Jio Institute, Navi Mumbai, 410206, India
| | - Abhijit Das
- Artificial Intelligence & Data Science, Jio Institute, Navi Mumbai, 410206, India
| | - Tanushree Meena
- Artificial Intelligence & Data Science, Jio Institute, Navi Mumbai, 410206, India
| | - Sudipta Roy
- Artificial Intelligence & Data Science, Jio Institute, Navi Mumbai, 410206, India.
| |
Collapse
|
2
|
Ende HB, Bateman BT. Quality Improvement in the Digital Age: The Promise of Using Informatics to Improve Obstetric Anesthesia Care. Anesth Analg 2024; 139:1215-1222. [PMID: 39231038 DOI: 10.1213/ane.0000000000006841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Informatics describes the study and use of processes for obtaining and utilizing data. In the clinical context, these data are then used to inform and educate providers to improve patient care. In the current digital age, informatic solutions can help clinicians to understand past or current quality issues (afferent tools), to benchmark personal performance against national averages (feedback tools), and to disseminate information to encourage best practice and quality care (efferent tools). There are countless examples of how these tools can be adapted for use in obstetric anesthesia, with evidence to support their implementation. This article thus aimed to summarize the many ways in which informatics can help clinicians to harness the power of data to improve quality and safety in obstetric anesthesia.
Collapse
Affiliation(s)
- Holly B Ende
- From the Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian T Bateman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
3
|
Francis F, Luz S, Wu H, Stock SJ, Townsend R. Machine learning on cardiotocography data to classify fetal outcomes: A scoping review. Comput Biol Med 2024; 172:108220. [PMID: 38489990 DOI: 10.1016/j.compbiomed.2024.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
INTRODUCTION Uterine contractions during labour constrict maternal blood flow and oxygen delivery to the developing baby, causing transient hypoxia. While most babies are physiologically adapted to withstand such intrapartum hypoxia, those exposed to severe hypoxia or with poor physiological reserves may experience neurological injury or death during labour. Cardiotocography (CTG) monitoring was developed to identify babies at risk of hypoxia by detecting changes in fetal heart rate (FHR) patterns. CTG monitoring is in widespread use in intrapartum care for the detection of fetal hypoxia, but the clinical utility is limited by a relatively poor positive predictive value (PPV) of an abnormal CTG and significant inter and intra observer variability in CTG interpretation. Clinical risk and human factors may impact the quality of CTG interpretation. Misclassification of CTG traces may lead to both under-treatment (with the risk of fetal injury or death) or over-treatment (which may include unnecessary operative interventions that put both mother and baby at risk of complications). Machine learning (ML) has been applied to this problem since early 2000 and has shown potential to predict fetal hypoxia more accurately than visual interpretation of CTG alone. To consider how these tools might be translated for clinical practice, we conducted a review of ML techniques already applied to CTG classification and identified research gaps requiring investigation in order to progress towards clinical implementation. MATERIALS AND METHOD We used identified keywords to search databases for relevant publications on PubMed, EMBASE and IEEE Xplore. We used Preferred Reporting Items for Systematic Review and Meta-Analysis for Scoping Reviews (PRISMA-ScR). Title, abstract and full text were screened according to the inclusion criteria. RESULTS We included 36 studies that used signal processing and ML techniques to classify CTG. Most studies used an open-access CTG database and predominantly used fetal metabolic acidosis as the benchmark for hypoxia with varying pH levels. Various methods were used to process and extract CTG signals and several ML algorithms were used to classify CTG. We identified significant concerns over the practicality of using varying pH levels as the CTG classification benchmark. Furthermore, studies needed to be more generalised as most used the same database with a low number of subjects for an ML study. CONCLUSION ML studies demonstrate potential in predicting fetal hypoxia from CTG. However, more diverse datasets, standardisation of hypoxia benchmarks and enhancement of algorithms and features are needed for future clinical implementation.
Collapse
Affiliation(s)
| | | | - Honghan Wu
- Institute of Health Informatics, University College London, UK
| | | | | |
Collapse
|
4
|
Deng Y, Zhang Y, Zhou Z, Zhang X, Jiao P, Zhao Z. A lightweight fetal distress-assisted diagnosis model based on a cross-channel interactive attention mechanism. Front Physiol 2023; 14:1090937. [PMID: 36950293 PMCID: PMC10025355 DOI: 10.3389/fphys.2023.1090937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Fetal distress is a symptom of fetal intrauterine hypoxia, which is seriously harmful to both the fetus and the pregnant woman. The current primary clinical tool for the assessment of fetal distress is Cardiotocography (CTG). Due to subjective variability, physicians often interpret CTG results inconsistently, hence the need to develop an auxiliary diagnostic system for fetal distress. Although the deep learning-based fetal distress-assisted diagnosis model has a high classification accuracy, the model not only has a large number of parameters but also requires a large number of computational resources, which is difficult to deploy to practical end-use scenarios. Therefore, this paper proposes a lightweight fetal distress-assisted diagnosis network, LW-FHRNet, based on a cross-channel interactive attention mechanism. The wavelet packet decomposition technique is used to convert the one-dimensional fetal heart rate (FHR) signal into a two-dimensional wavelet packet coefficient matrix map as the network input layer to fully obtain the feature information of the FHR signal. With ShuffleNet-v2 as the core, a local cross-channel interactive attention mechanism is introduced to enhance the model's ability to extract features and achieve effective fusion of multichannel features without dimensionality reduction. In this paper, the publicly available database CTU-UHB is used for the network performance evaluation. LW-FHRNet achieves 95.24% accuracy, which meets or exceeds the classification results of deep learning-based models. Additionally, the number of model parameters is reduced many times compared with the deep learning model, and the size of the model parameters is only 0.33 M. The results show that the lightweight model proposed in this paper can effectively aid in fetal distress diagnosis.
Collapse
Affiliation(s)
- Yanjun Deng
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Yefei Zhang
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Zhixin Zhou
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Xianfei Zhang
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Pengfei Jiao
- School of Cyberspace Security, Hangzhou Dianzi University, Hangzhou, China
| | - Zhidong Zhao
- School of Cyberspace Security, Hangzhou Dianzi University, Hangzhou, China
- *Correspondence: Zhidong Zhao,
| |
Collapse
|
5
|
Silva Neto MGD, Vale Madeiro JPD, Gomes DG. On designing a biosignal-based fetal state assessment system: A systematic mapping study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 216:106671. [PMID: 35144149 DOI: 10.1016/j.cmpb.2022.106671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 01/05/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE The patterns present in biosignals, such as fetal heart rate (FHR), are valuable indicators of fetal well-being. In designing biosignal analysis systems, the variety of approaches and technology usage impairs the decision-making for the fundamental units of the systems. There is a need for an updated overview of studies encompassing the biosignal-based fetal state assessment systems. Therefore, we propose a systematic mapping study to identify and synthesize recent research regarding the building blocks that compose these systems. METHODS We followed well-established guidelines to perform a systematic mapping of studies regarding the building-blocks that compose the fetal state assessment systems and published between January 2016 and January 2021. A search string was determined based on the mapping questions and the PI (population and intervention) divisions. The search string was applied in digital libraries covering the fields of computer science, engineering, and medical informatics. Then, we applied the forward snowballing technique to complement the resulting set. This process resulted in 75 primary studies selected from a total of 871 papers. RESULTS Selected studies were classified according to the publication types, systems design stages, datasets, and predictive capabilities. The results revealed that (i) The majority of the selected studies refer to the method as a type of publication and there is a lack of validation studies; (ii) The CTU-UHB was the most frequent biosignal-based dataset and UCI-CTG was the most frequent feature-based data; (iii) The selected studies made use of the system design stages alone or in a mixed-mode. CONCLUSION The results indicated that the well-established classification models achieved competitive results compared with the state-of-the-art methods in data-constrained system designs. Moreover, we identified the need for validation studies in the clinical environment.
Collapse
Affiliation(s)
| | - João Paulo do Vale Madeiro
- Department of Engineering of Teleinformatics, Federal University of Ceará, Ceará, Fortaleza 60455-900, Brazil
| | - Danielo G Gomes
- Department of Engineering of Teleinformatics, Federal University of Ceará, Ceará, Fortaleza 60455-900, Brazil
| |
Collapse
|
6
|
Ribeiro M, Monteiro-Santos J, Castro L, Antunes L, Costa-Santos C, Teixeira A, Henriques TS. Non-linear Methods Predominant in Fetal Heart Rate Analysis: A Systematic Review. Front Med (Lausanne) 2021; 8:661226. [PMID: 34917624 PMCID: PMC8669823 DOI: 10.3389/fmed.2021.661226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
The analysis of fetal heart rate variability has served as a scientific and diagnostic tool to quantify cardiac activity fluctuations, being good indicators of fetal well-being. Many mathematical analyses were proposed to evaluate fetal heart rate variability. We focused on non-linear analysis based on concepts of chaos, fractality, and complexity: entropies, compression, fractal analysis, and wavelets. These methods have been successfully applied in the signal processing phase and increase knowledge about cardiovascular dynamics in healthy and pathological fetuses. This review summarizes those methods and investigates how non-linear measures are related to each paper's research objectives. Of the 388 articles obtained in the PubMed/Medline database and of the 421 articles in the Web of Science database, 270 articles were included in the review after all exclusion criteria were applied. While approximate entropy is the most used method in classification papers, in signal processing, the most used non-linear method was Daubechies wavelets. The top five primary research objectives covered by the selected papers were detection of signal processing, hypoxia, maturation or gestational age, intrauterine growth restriction, and fetal distress. This review shows that non-linear indices can be used to assess numerous prenatal conditions. However, they are not yet applied in clinical practice due to some critical concerns. Some studies show that the combination of several linear and non-linear indices would be ideal for improving the analysis of the fetus's well-being. Future studies should narrow the research question so a meta-analysis could be performed, probing the indices' performance.
Collapse
Affiliation(s)
- Maria Ribeiro
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal.,Computer Science Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - João Monteiro-Santos
- Centre for Health Technology and Services Research, Faculty of Medicine University of Porto, Porto, Portugal.,Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luísa Castro
- Centre for Health Technology and Services Research, Faculty of Medicine University of Porto, Porto, Portugal.,Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.,School of Health of Polytechnic of Porto, Porto, Portugal
| | - Luís Antunes
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal.,Computer Science Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Cristina Costa-Santos
- Centre for Health Technology and Services Research, Faculty of Medicine University of Porto, Porto, Portugal.,Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Andreia Teixeira
- Centre for Health Technology and Services Research, Faculty of Medicine University of Porto, Porto, Portugal.,Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Teresa S Henriques
- Centre for Health Technology and Services Research, Faculty of Medicine University of Porto, Porto, Portugal.,Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Das S, Mukherjee H, Obaidullah SM, Roy K, Saha CK. Ensemble based technique for the assessment of fetal health using cardiotocograph – a case study with standard feature reduction techniques. MULTIMEDIA TOOLS AND APPLICATIONS 2020; 79:35147-35168. [DOI: 10.1007/s11042-020-08853-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 01/04/2025]
|