1
|
Miljuš G, Penezić A, Pažitná L, Gligorijević N, Baralić M, Vilotić A, Šunderić M, Robajac D, Dobrijević Z, Katrlík J, Nedić O. Glycosylation and Characterization of Human Transferrin in an End-Stage Kidney Disease. Int J Mol Sci 2024; 25:4625. [PMID: 38731843 PMCID: PMC11083005 DOI: 10.3390/ijms25094625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Chronic kidney disease (CKD) is a global health concern affecting approximately one billion individuals worldwide. End-stage kidney disease (ESKD), the most severe form of CKD, is often accompanied by anemia. Peritoneal dialysis (PD), a common treatment for ESKD, utilizes the peritoneum for solute transfer but is associated with complications including protein loss, including transferrin (Tf) a key protein involved in iron transport. This study investigated Tf characteristics in ESKD patients compared to healthy individuals using lectin microarray, spectroscopic techniques and immunocytochemical analysis to assess Tf interaction with transferrin receptors (TfRs). ESKD patients exhibited altered Tf glycosylation patterns, evidenced by significant changes in lectin reactivity compared to healthy controls. However, structural analyses revealed no significant differences in the Tf secondary or tertiary structures between the two groups. A functional analysis demonstrated comparable Tf-TfR interaction in both PD and healthy samples. Despite significant alterations in Tf glycosylation, structural integrity and Tf-TfR interaction remained preserved in PD patients. These findings suggest that while glycosylation changes may influence iron metabolism, they do not impair Tf function. The study highlights the importance of a glucose-free dialysis solutions in managing anemia exacerbation in PD patients with poorly controlled anemia, potentially offering a targeted therapeutic approach to improve patient outcomes.
Collapse
Affiliation(s)
- Goran Miljuš
- Institute for the Application of Nuclear Energy (INEP), Department for Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Penezić
- Institute for the Application of Nuclear Energy (INEP), Department for Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia
| | - Nikola Gligorijević
- Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Baralić
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Aleksandra Vilotić
- Institute for the Application of Nuclear Energy (INEP), Department for Biology of Reproduction, University of Belgrade, 11000 Belgrade, Serbia
| | - Miloš Šunderić
- Institute for the Application of Nuclear Energy (INEP), Department for Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| | - Dragana Robajac
- Institute for the Application of Nuclear Energy (INEP), Department for Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| | - Zorana Dobrijević
- Institute for the Application of Nuclear Energy (INEP), Department for Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy (INEP), Department for Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Yan H, Jin S, Sun X, Han Z, Wang H, Woo J, Meng L, Chi X, Han C, Zhao Y, Tucker ME, Wei L, Zhao Y, Zhao H. Mn 2+ recycling in hypersaline wastewater: unnoticed intracellular biomineralization and pre-cultivation of immobilized bacteria. World J Microbiol Biotechnol 2024; 40:57. [PMID: 38165509 DOI: 10.1007/s11274-023-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Microbially induced manganese carbonate precipitation has been utilized for the treatment of wastewater containing manganese. In this study, Virgibacillus dokdonensis was used to remove manganese ions from an environment containing 5% NaCl. The results showed a significant decrease in carbonic anhydrase activity and concentrations of carbonate and bicarbonate ions with increasing manganese ion concentrations. However, the levels of humic acid analogues, polysaccharides, proteins, and DNA in EPS were significantly elevated compared to those in a manganese-free environment. The rhodochrosite exhibited a preferred growth orientation, abundant morphological features, organic elements including nitrogen, phosphorus, and sulfur, diverse protein secondary structures, as well as stable carbon isotopes displaying a stronger negative bias. The presence of manganese ions was found to enhance the levels of chemical bonds O-C=O and N-C=O in rhodochrosite. Additionally, manganese in rhodochrosite exhibited both + 2 and + 3 valence states. Rhodochrosite forms not only on the cell surface but also intracellularly. After being treated with free bacteria for 20 days, the removal efficiency of manganese ions ranged from 88.4 to 93.2%, and reached a remarkable 100% on the 10th day when using bacteria immobilized on activated carbon fiber that had been pre-cultured for three days. The removal efficiency of manganese ions was significantly enhanced under the action of pre-cultured immobilized bacteria compared to non-pre-cultured immobilized bacteria. This study contributes to a comprehensive understanding of the mineralization mechanism of rhodochrosite, thereby providing an economically and environmentally sustainable biological approach for treating wastewater containing manganese.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shengping Jin
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaolei Sun
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Jusun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Korea
| | - Long Meng
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiangqun Chi
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Chao Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yanyang Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
- Cabot Institute, University of Bristol, Cantock's Close, Bristol, BS8 1UJ, UK
| | - Lirong Wei
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yueming Zhao
- Qingdao West Coast New District First High School, Qingdao, 266555, China
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
3
|
Seredin P, Goloshchapov D, Kashkarov V, Lukin A, Peshkov Y, Ippolitov I, Ippolitov Y, Litvinova T, Vongsvivut J, Chae B, Freitas RO. Changes in Dental Biofilm Proteins' Secondary Structure in Groups of People with Different Cariogenic Situations in the Oral Cavity and Using Medications by Means of Synchrotron FTIR-Microspectroscopy. Int J Mol Sci 2023; 24:15324. [PMID: 37895003 PMCID: PMC10607285 DOI: 10.3390/ijms242015324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
This work unveils the idea that the cariogenic status of the oral cavity (the presence of active caries lesions) can be predicted via a lineshape analysis of the infrared spectral signatures of the secondary structure of proteins in dental biofilms. These spectral signatures that work as natural markers also show strong sensitivity to the application in patients of a so-called modulator-a medicinal agent (a pelleted mineral complex with calcium glycerophosphate). For the first time, according to our knowledge, in terms of deconvolution of the complete spectral profile of the amide I and amide II bands, significant intra- and intergroup differences were determined in the secondary structure of proteins in the dental biofilm of patients with a healthy oral cavity and with a carious pathology. This allowed to conduct a mathematical assessment of the spectral shifts in proteins' secondary structure in connection with the cariogenic situation in the oral cavity and with an external modulation. It was shown that only for the component parallel β-strands in the amide profile of the biofilm, a statistically significant (p < 0.05) change in its percentage weight (composition) was registered in a cariogenic situation (presence of active caries lesions). Note that no significant differences were detected in a normal situation (control) and in the presence of a carious pathology before and after the application of the modulator. The change in the frequency and percentage weight of parallel β-strands in the spectra of dental biofilms proved to be the result of the presence of cariogenic mutans streptococci in the film as well as of the products of their metabolism-glucan polymers. We foresee that the results presented here can inherently provide the basis for the infrared spectral diagnosis of changes (shifts) in the oral microbiome driven by the development of the carious process in the oral cavity as well as for the choice of optimal therapeutic treatments of caries based on microbiome-directed prevention measures.
Collapse
Affiliation(s)
- Pavel Seredin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Dmitry Goloshchapov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Anatoly Lukin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Yaroslav Peshkov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia
| | - Tatiana Litvinova
- Computational Semasiology Laboratory, Voronezh State Pedagogical University, 394043 Voronezh, Russia
| | - Jitraporn Vongsvivut
- Australian Synchrotron (Synchrotron Light Source Australia Pty LTD), Clayton, VIC 3168, Australia;
| | - Boknam Chae
- Pohang Accelerator Laboratory, Beamline Research Division, Pohang 37673, Republic of Korea
| | - Raul O. Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil
| |
Collapse
|
4
|
Buchko GW, Zhou M, Vesely CH, Tao J, Shaw WJ, Mehl RA, Cooley RB. High-yield recombinant bacterial expression of 13 C-, 15 N-labeled, serine-16 phosphorylated, murine amelogenin using a modified third generation genetic code expansion protocol. Protein Sci 2023; 32:e4560. [PMID: 36585836 PMCID: PMC9850436 DOI: 10.1002/pro.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Amelogenin constitutes ~90% of the enamel matrix in the secretory stage of amelogenesis, a still poorly understood process that results in the formation of the hardest and most mineralized tissue in vertebrates-enamel. Most biophysical research with amelogenin uses recombinant protein expressed in Escherichia coli. In addition to providing copious amounts of protein, recombinant expression allows 13 C- and 15 N-labeling for detailed structural studies using NMR spectroscopy. However, native amelogenin is phosphorylated at one position, Ser-16 in murine amelogenin, and there is mounting evidence that Ser-16 phosphorylation is important. Using a modified genetic code expansion protocol we have expressed and purified uniformly 13 C-, 15 N-labeled murine amelogenin (pS16M179) with ~95% of the protein being correctly phosphorylated. Homogeneous phosphorylation was achieved using commercially available, enriched, 13 C-, 15 N-labeled media, and protein expression was induced with isopropyl β-D-1-thiogalactopyranoside at 310 K. Phosphoserine incorporation was verified from one-dimensional 31 P NMR spectra, comparison of 1 H-15 N HSQC spectra, Phos-tag SDS PAGE, and mass spectrometry. Phosphorus-31 NMR spectra for pS16M179 under conditions known to trigger amelogenin self-assembly into nanospheres confirm nanosphere models with buried N-termini. Lambda phosphatase treatment of these nanospheres results in the dephosphorylation of pS16M179, confirming that smaller oligomers and monomers with exposed N-termini are in equilibrium with nanospheres. Such 13 C-, 15 N-labeling of amelogenin with accurately encoded phosphoserine incorporation will accelerate biomineralization research to understand amelogenesis and stimulate the expanded use of genetic code expansion protocols to introduce phosphorylated amino acids into proteins.
Collapse
Affiliation(s)
- Garry W. Buchko
- Earth and Biological Sciences DirectoratePacific Northwest National LaboratoryRichlandWashingtonUSA,School of Molecular BiosciencesWashington State UniversityPullmanWashingtonUSA
| | - Mowei Zhou
- Earth and Biological Sciences DirectoratePacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Cat Hoang Vesely
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregonUSA
| | - Jinhui Tao
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Wendy J. Shaw
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Ryan A. Mehl
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregonUSA
| | - Richard B. Cooley
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
5
|
Xu J, Shi H, Luo J, Yao H, Wang P, Li Z, Wei J. Advanced materials for enamel remineralization. Front Bioeng Biotechnol 2022; 10:985881. [PMID: 36177189 PMCID: PMC9513249 DOI: 10.3389/fbioe.2022.985881] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dental caries, a chronic and irreversible disease caused by caries-causing bacteria, has been listed as one of the three major human diseases to be prevented and treated. Therefore, it is critical to effectively stop the development of enamel caries. Remineralization treatment can control the progression of caries by inhibiting and reversing enamel demineralization at an early stage. In this process, functional materials guide the deposition of minerals on the damaged enamel, and the structure and hardness of the enamel are then restored. These remineralization materials have great potential for clinical application. In this review, advanced materials for enamel remineralization were briefly summarized, furthermore, an outlook on the perspective of remineralization materials were addressed.
Collapse
Affiliation(s)
- Jiarong Xu
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Shi
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Haiyan Yao
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| | - Pei Wang
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- *Correspondence: Zhihua Li, ; Junchao Wei,
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- *Correspondence: Zhihua Li, ; Junchao Wei,
| |
Collapse
|
6
|
Integrative measurement analysis via machine learning descriptor selection for investigating physical properties of biopolymers in hairs. Sci Rep 2021; 11:24359. [PMID: 34934112 PMCID: PMC8692616 DOI: 10.1038/s41598-021-03793-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Integrative measurement analysis of complex subjects, such as polymers is a major challenge to obtain comprehensive understanding of the properties. In this study, we describe analytical strategies to extract and selectively associate compositional information measured by multiple analytical techniques, aiming to reveal their relationships with physical properties of biopolymers derived from hair. Hair samples were analyzed by multiple techniques, including solid-state nuclear magnetic resonance (NMR), time-domain NMR, Fourier transform infrared spectroscopy, and thermogravimetric and differential thermal analysis. The measured data were processed by different processing techniques, such as spectral differentiation and deconvolution, and then converted into a variety of “measurement descriptors” with different compositional information. The descriptors were associated with the mechanical properties of hair by constructing prediction models using machine learning algorithms. Herein, the stepwise model refinement via selection of adopted descriptors based on importance evaluation identified the most contributive descriptors, which provided an integrative interpretation about the compositional factors, such as α-helix keratins in cortex; and bounded water and thermal resistant components in cuticle. These results demonstrated the efficacy of the present strategy to generate and select descriptors from manifold measured data for investigating the nature of sophisticated subjects, such as hair.
Collapse
|
7
|
Huang Y, Bai Y, Chang C, Bacino M, Cheng IC, Li L, Habelitz S, Li W, Zhang Y. A N-Terminus Domain Determines Amelogenin's Stability to Guide the Development of Mouse Enamel Matrix. J Bone Miner Res 2021; 36:1781-1795. [PMID: 33957008 PMCID: PMC9307086 DOI: 10.1002/jbmr.4329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Amelogenins, the principal proteins in the developing enamel microenvironment, self-assemble into supramolecular structures to govern the remodeling of a proteinaceous organic matrix into longitudinally ordered hydroxyapatite nanocrystal arrays. Extensive in vitro studies using purified native or recombinant proteins have revealed the potential of N-terminal amelogenin on protein self-assembly and its ability to guide the mineral deposition. We have previously identified a 14-aa domain (P2) of N-terminal amelogenin that can self-assemble into amyloid-like fibrils in vitro. Here, we investigated how this domain affects the ability of amelogenin self-assembling and stability of enamel matrix protein scaffolding in an in vivo animal model. Mice harboring mutant amelogenin lacking P2 domain had a hypoplastic, hypomineralized, and aprismatic enamel. In vitro, the mutant recombinant amelogenin without P2 had a reduced tendency to self-assemble and was prone to accelerated hydrolysis by MMP20, the prevailing metalloproteinase in early developing enamel matrix. A reduced amount of amelogenins and a lack of elongated fibrous assemblies in the development enamel matrix of mutant mice were evident compared with that in the wild-type mouse enamel matrix. Our study is the first to demonstrate that a subdomain (P2) at the N-terminus of amelogenin controls amelogenin's assembly into a transient protein scaffold that resists rapid proteolysis during enamel development in an animal model. Understanding the building blocks of fibrous scaffold that guides the longitudinal growth of hydroxyapatites in enamel matrix sheds light on protein-mediated enamel bioengineering. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yulei Huang
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA.,Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, USA
| | - Yushi Bai
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun-Yat-sen University, Guangzhou, China
| | - Chih Chang
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Margot Bacino
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun-Yat-sen University, Guangzhou, China
| | - Ieong Cheng Cheng
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Li Li
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Stefan Habelitz
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun-Yat-sen University, Guangzhou, China
| | - Wu Li
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Yan Zhang
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Amelogenin-Derived Peptides in Bone Regeneration: A Systematic Review. Int J Mol Sci 2021; 22:ijms22179224. [PMID: 34502132 PMCID: PMC8431254 DOI: 10.3390/ijms22179224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Amelogenins are enamel matrix proteins currently used to treat bone defects in periodontal surgery. Recent studies have highlighted the relevance of amelogenin-derived peptides, named LRAP, TRAP, SP, and C11, in bone tissue engineering. Interestingly, these peptides seem to maintain or even improve the biological activity of the full-length protein, which has received attention in the field of bone regeneration. In this article, the authors combined a systematic and a narrative review. The former is focused on the existing scientific evidence on LRAP, TRAP, SP, and C11's ability to induce the production of mineralized extracellular matrix, while the latter is concentrated on the structure and function of amelogenin and amelogenin-derived peptides. Overall, the collected data suggest that LRAP and SP are able to induce stromal stem cell differentiation towards osteoblastic phenotypes; specifically, SP seems to be more reliable in bone regenerative approaches due to its osteoinduction and the absence of immunogenicity. However, even if some evidence is convincing, the limited number of studies and the scarcity of in vivo studies force us to wait for further investigations before drawing a solid final statement on the real potential of amelogenin-derived peptides in bone tissue engineering.
Collapse
|
9
|
Gil-Bona A, Bidlack FB. Tooth Enamel and its Dynamic Protein Matrix. Int J Mol Sci 2020; 21:ijms21124458. [PMID: 32585904 PMCID: PMC7352428 DOI: 10.3390/ijms21124458] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022] Open
Abstract
Tooth enamel is the outer covering of tooth crowns, the hardest material in the mammalian body, yet fracture resistant. The extremely high content of 95 wt% calcium phosphate in healthy adult teeth is achieved through mineralization of a proteinaceous matrix that changes in abundance and composition. Enamel-specific proteins and proteases are known to be critical for proper enamel formation. Recent proteomics analyses revealed many other proteins with their roles in enamel formation yet to be unraveled. Although the exact protein composition of healthy tooth enamel is still unknown, it is apparent that compromised enamel deviates in amount and composition of its organic material. Why these differences affect both the mineralization process before tooth eruption and the properties of erupted teeth will become apparent as proteomics protocols are adjusted to the variability between species, tooth size, sample size and ephemeral organic content of forming teeth. This review summarizes the current knowledge and published proteomics data of healthy and diseased tooth enamel, including advancements in forensic applications and disease models in animals. A summary and discussion of the status quo highlights how recent proteomics findings advance our understating of the complexity and temporal changes of extracellular matrix composition during tooth enamel formation.
Collapse
Affiliation(s)
- Ana Gil-Bona
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence: (A.G.-B.); (F.B.B.)
| | - Felicitas B. Bidlack
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence: (A.G.-B.); (F.B.B.)
| |
Collapse
|
10
|
Gligorijević N, Šukalović V, Penezić A, Nedić O. Characterisation of the binding of dihydro-alpha-lipoic acid to fibrinogen and the effects on fibrinogen oxidation and fibrin formation. Int J Biol Macromol 2020; 147:319-325. [DOI: 10.1016/j.ijbiomac.2020.01.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|
11
|
Shin NY, Yamazaki H, Beniash E, Yang X, Margolis SS, Pugach MK, Simmer JP, Margolis HC. Amelogenin phosphorylation regulates tooth enamel formation by stabilizing a transient amorphous mineral precursor. J Biol Chem 2020; 295:1943-1959. [PMID: 31919099 DOI: 10.1074/jbc.ra119.010506] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/30/2019] [Indexed: 11/06/2022] Open
Abstract
Dental enamel comprises interwoven arrays of extremely long and narrow crystals of carbonated hydroxyapatite called enamel rods. Amelogenin (AMELX) is the predominant extracellular enamel matrix protein and plays an essential role in enamel formation (amelogenesis). Previously, we have demonstrated that full-length AMELX forms higher-order supramolecular assemblies that regulate ordered mineralization in vitro, as observed in enamel rods. Phosphorylation of the sole AMELX phosphorylation site (Ser-16) in vitro greatly enhances its capacity to stabilize amorphous calcium phosphate (ACP), the first mineral phase formed in developing enamel, and prevents apatitic crystal formation. To test our hypothesis that AMELX phosphorylation is critical for amelogenesis, we generated and characterized a hemizygous knockin (KI) mouse model with a phosphorylation-defective Ser-16 to Ala-16 substitution in AMELX. Using EM analysis, we demonstrate that in the absence of phosphorylated AMELX, KI enamel lacks enamel rods, the hallmark component of mammalian enamel, and, unlike WT enamel, appears to be composed of less organized arrays of shorter crystals oriented normal to the dentinoenamel junction. KI enamel also exhibited hypoplasia and numerous surface defects, whereas heterozygous enamel displayed highly variable mosaic structures with both KI and WT features. Importantly, ACP-to-apatitic crystal transformation occurred significantly faster in KI enamel. Secretory KI ameloblasts also lacked Tomes' processes, consistent with the absence of enamel rods, and underwent progressive cell pathology throughout enamel development. In conclusion, AMELX phosphorylation plays critical mechanistic roles in regulating ACP-phase transformation and enamel crystal growth, and in maintaining ameloblast integrity and function during amelogenesis.
Collapse
Affiliation(s)
- Nah-Young Shin
- The Forsyth Institute, Cambridge, Massachusetts 02142; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Hajime Yamazaki
- The Forsyth Institute, Cambridge, Massachusetts 02142; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115; Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania 15213
| | - Elia Beniash
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania 15213
| | - Xu Yang
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania 15213
| | - Seth S Margolis
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Megan K Pugach
- The Forsyth Institute, Cambridge, Massachusetts 02142; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - James P Simmer
- Department of Biologic and Material Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108
| | - Henry C Margolis
- The Forsyth Institute, Cambridge, Massachusetts 02142; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115; Department of Periodontics and Preventive Dentistry, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
12
|
Green DR, Schulte F, Lee KH, Pugach MK, Hardt M, Bidlack FB. Mapping the Tooth Enamel Proteome and Amelogenin Phosphorylation Onto Mineralizing Porcine Tooth Crowns. Front Physiol 2019; 10:925. [PMID: 31417410 PMCID: PMC6682599 DOI: 10.3389/fphys.2019.00925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
Tooth enamel forms in an ephemeral protein matrix where changes in protein abundance, composition and posttranslational modifications are critical to achieve healthy enamel properties. Amelogenin (AMELX) with its splice variants is the most abundant enamel matrix protein, with only one known phosphorylation site at serine 16 shown in vitro to be critical for regulating mineralization. The phosphorylated form of AMELX stabilizes amorphous calcium phosphate, while crystalline hydroxyapatite forms in the presence of the unphosphorylated protein. While AMELX regulates mineral transitions over space and time, it is unknown whether and when un-phosphorylated amelogenin occurs during enamel mineralization. This study aims to reveal the spatiotemporal distribution of the cleavage products of the most abundant AMLEX splice variants including the full length P173, the shorter leucine-rich amelogenin protein (LRAP), and the exon 4-containing P190 in forming enamel, all within the context of the changing enamel matrix proteome during mineralization. We microsampled permanent pig molars, capturing known stages of enamel formation from both crown surface and inner enamel. Nano-LC-MS/MS proteomic analyses after tryptic digestion rendered more than 500 unique protein identifications in enamel, dentin, and bone. We mapped collagens, keratins, and proteolytic enzymes (CTSL, MMP2, MMP10) and determined distributions of P173, LRAP, and P190 products, the enamel proteins enamelin (ENAM) and ameloblastin (AMBN), and matrix-metalloprotease-20 (MMP20) and kallikrein-4 (KLK4). All enamel proteins and KLK4 were near-exclusive to enamel and in excellent agreement with published abundance levels. Phosphorylated P173 and LRAP products decreased in abundance from recently deposited matrix toward older enamel, mirrored by increasing abundances of testicular acid phosphatase (ACPT). Our results showed that hierarchical clustering analysis of secretory enamel links closely matching distributions of unphosphorylated P173 and LRAP products with ACPT and non-traditional amelogenesis proteins, many associated with enamel defects. We report higher protein diversity than previously published and Gene Ontology (GO)-defined protein functions related to the regulation of mineral formation in secretory enamel (e.g., casein α-S1, CSN1S1), immune response in erupted enamel (e.g., peptidoglycan recognition protein, PGRP), and phosphorylation. This study presents a novel approach to characterize and study functional relationships through spatiotemporal mapping of the ephemeral extracellular matrix proteome.
Collapse
Affiliation(s)
- Daniel R Green
- The Forsyth Institute, Cambridge, MA, United States.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | | | - Kyu-Ha Lee
- The Forsyth Institute, Cambridge, MA, United States.,Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Megan K Pugach
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Markus Hardt
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Felicitas B Bidlack
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
13
|
Yamazaki H, Tran B, Beniash E, Kwak SY, Margolis HC. Proteolysis by MMP20 Prevents Aberrant Mineralization in Secretory Enamel. J Dent Res 2019; 98:468-475. [PMID: 30744480 DOI: 10.1177/0022034518823537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present study was conducted to investigate the role of proteolysis by matrix metalloproteinase 20 (MMP20) in regulating the initial formation of the enamel mineral structure during the secretory stage of amelogenesis, utilizing Mmp20-null mice that lack this essential protease. Ultrathin sagittal sections of maxillary incisors from 8-wk-old wild-type (WT), Mmp20-null (KO), and heterozygous (HET) littermates were prepared. Secretory-stage enamel ultrastructures from each genotype as a function of development were compared using transmission electron microscopy, selected area electron diffraction, and Raman microspectroscopy. Characteristic rod structures observed in WT enamel exhibited amorphous features in newly deposited enamel, which subsequently transformed into apatite-like crystals in older enamel. Surprisingly, initial mineral formation in KO enamel was found to proceed in the same manner as in the WT. However, soon after a rod structure began to form, large plate-like crystals appeared randomly within the developing KO enamel layer. As development continued, observed plate-like crystals became dominant and obscured the appearance of the enamel rod structure. Upon formation of these plate-like crystals, the KO enamel layer stopped growing in thickness, unlike WT and HET enamel layers that continued to grow at the same rate. Raman results indicated that Mmp20-KO enamel contains a significant portion of octacalcium phosphate, unlike WT enamel. Although normal in all other respects, large, randomly dispersed mineral crystals were observed in secretory HET enamel, although to a lesser extent than that seen in KO enamel, indicating that the level of MMP20 expression has a proportional effect on suppressing aberrant mineral formation. In conclusion, we found that proteolysis of extracellular enamel matrix proteins by MMP20 is not required for the initial development of the enamel rod structure during the early secretory stage of amelogenesis. Proteolysis by MMP20, however, is essential for the prevention of abnormal crystal formation during amelogenesis.
Collapse
Affiliation(s)
- H Yamazaki
- 1 The Forsyth Institute, Cambridge, MA, USA.,2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - B Tran
- 3 Simmons College, Boston, MA, USA
| | - E Beniash
- 4 Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - S Y Kwak
- 1 The Forsyth Institute, Cambridge, MA, USA.,2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - H C Margolis
- 1 The Forsyth Institute, Cambridge, MA, USA.,2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
14
|
Le Norcy E, Lesieur J, Sadoine J, Rochefort GY, Chaussain C, Poliard A. Phosphorylated and Non-phosphorylated Leucine Rich Amelogenin Peptide Differentially Affect Ameloblast Mineralization. Front Physiol 2018; 9:55. [PMID: 29472869 PMCID: PMC5809816 DOI: 10.3389/fphys.2018.00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/17/2018] [Indexed: 01/03/2023] Open
Abstract
The Leucine Rich Amelogenin Peptide (LRAP) is a product of alternative splicing of the amelogenin gene. As full length amelogenin, LRAP has been shown, in precipitation experiments, to regulate hydroxyapatite (HAP) crystal formation depending on its phosphorylation status. However, very few studies have questioned the impact of its phosphorylation status on enamel mineralization in biological models. Therefore, we have analyzed the effect of phosphorylated (+P) or non-phosphorylated (−P) LRAP on enamel formation in ameloblast-like cell lines and ex vivo cultures of murine postnatal day 1 molar germs. To this end, the mineral formed was analyzed by micro-computed tomography, Field Emission Scanning Electron Microscopy, Transmission Electron Microscopy, Selected Area Electon Diffraction imaging. Amelogenin gene transcription was evaluated by qPCR analysis. Our data show that, in both cells and germ cultures, LRAP is able to induce an up-regulation of amelogenin transcription independently of its phosphorylation status. Mineral formation is promoted by LRAP(+P) in all models, while LRAP(–P) essentially affects HAP crystal formation through an increase in crystal length and organization in ameloblast-like cells. Altogether, these data suggest a differential effect of LRAP depending on its phosphorylation status and on the ameloblast stage at the time of treatment. Therefore, LRAP isoforms can be envisioned as potential candidates for treatment of enamel lesions or defects and their action should be further evaluated in pathological models.
Collapse
Affiliation(s)
- Elvire Le Norcy
- EA2496 Faculté de Chirurgie Dentaire, Université Paris Descartes USPC, Paris, France.,APHP, Hôpital Bretonneau, Service d'Odontologie, Paris, France
| | - Julie Lesieur
- EA2496 Faculté de Chirurgie Dentaire, Université Paris Descartes USPC, Paris, France
| | - Jeremy Sadoine
- EA2496 Faculté de Chirurgie Dentaire, Université Paris Descartes USPC, Paris, France
| | - Gaël Y Rochefort
- EA2496 Faculté de Chirurgie Dentaire, Université Paris Descartes USPC, Paris, France
| | - Catherine Chaussain
- EA2496 Faculté de Chirurgie Dentaire, Université Paris Descartes USPC, Paris, France.,APHP, Hôpital Bretonneau, Service d'Odontologie, Paris, France
| | - Anne Poliard
- EA2496 Faculté de Chirurgie Dentaire, Université Paris Descartes USPC, Paris, France
| |
Collapse
|