1
|
Jiang K, Xu C, Yu H, Kong L, Liu S, Li Q. Transcriptomic and Physiological Analysis Reveal Melanin Synthesis-Related Genes and Pathways in Pacific Oysters (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:364-379. [PMID: 38483671 DOI: 10.1007/s10126-024-10302-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Shell color is one of the shell traits of molluscs, which has been regarded as an economic trait in some bivalves. Pacific oysters (Crassostrea gigas) are important aquaculture shellfish worldwide. In the past decade, several shell color strains of C. gigas were developed through selective breeding, which provides valuable materials for research on the inheritance pattern and regulation mechanisms of shell color. The inheritance patterns of different shell colors in C. gigas have been identified in certain research; however, the regulation mechanism of oyster pigmentation and shell color formation remains unclear. In this study, we performed transcriptomic and physiological analyses using black and white shell oysters to investigate the molecular mechanism of melanin synthesis in C. gigas. Several pigmentation-related pathways, such as cytochrome P450, melanogenesis, tyrosine metabolism, and the cAMP signaling pathway were found. The majority of differentially expressed genes and some signaling molecules from these pathways exhibited a higher level in the black shell oysters than in the white, especially after L-tyrosine feeding, suggesting that those differences may cause a variation of tyrosine metabolism and melanin synthesis. In addition, the in vitro assay using primary cells from mantle tissue showed that L-tyrosine incubation increased cAMP level, gene and protein expression, and melanin content. This study reveals the difference in tyrosine metabolism and melanin synthesis in black and white shell oysters and provides evidence for the potential regulatory mechanism of shell color in oysters.
Collapse
Affiliation(s)
- Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Li Y, Mokrani A, Fu H, Shi C, Li Q, Liu S. Development of Nanopore sequencing-based full-length transcriptome database toward functional genome annotation of the Pacific oyster, Crassostrea gigas. Genomics 2023; 115:110697. [PMID: 37567397 DOI: 10.1016/j.ygeno.2023.110697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The Pacific oyster (Crassostrea gigas) is a widely cultivated shellfish in the world, while its transcriptome diversity remains less unexplored due to the limitation of short reads. In this study, we used Oxford Nanopore sequencing to develop the full-length transcriptome database of C. gigas. We identified 77,920 full-length transcripts from 21,523 genes, and uncovered 9668 alternative splicing events and 87,468 alternative polyadenylation sites. Notably, a total of 16,721 novel transcripts were annotated in this work. Furthermore, integrative analysis of 25 publicly available RNA-seq datasets revealed the transcriptome diversity involved in post-transcriptional regulation in C. gigas. We further developed a Drupal based webserver, Cgtdb, which can be used for transcriptome visualization, sequence alignment, and functional genome annotation analyses. This work provides valuable resources and a useful tool for integrative analysis of various transcriptome datasets in C. gigas, which will serve as an essential reference for functional annotation of the oyster genome.
Collapse
Affiliation(s)
- Yin Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ahmed Mokrani
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Huiru Fu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Chenyu Shi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Gu W, Liu D, Sun J. Co-crystallization of curcumin for improved photodynamic inactivation of Vibrio parahaemolyticus and its application for the preservation of cooked clams. Int J Food Microbiol 2022; 378:109816. [PMID: 35749911 DOI: 10.1016/j.ijfoodmicro.2022.109816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Curcumin (CUR) is a natural active product widely used as photosensitizer in photodynamic inactivation (PDI) due to low toxicity and low cost. However, the main challenge that limit the efficacy of CUR in PDI are its low solubility in water medium and hence low bioavailability. The co-crystallization is a novel process enables improvements in physicochemical properties such as solubility and bioavailability of water insoluble compound by the incidence of molecular interactions between the active pharmaceutical ingredient and conformer. The main objective of this work is to produce CUR-d-Tyr co-crystal (CDC) by co-crystallization technique using d-Tyrosine (d-Tyr) as the conformer in order to increase CUR water solubility as well as antimicrobial photodynamic activity. CDC presented a different crystalline structure compared with pure CUR. The solubility of CDC in water medium was about 16.5 times greater than pure CUR. The co-crystallization process increased CUR-mediated photodynamic inactivation efficacy of Vibrio parahaemolyticus (V. parahaemolyticus), probably due to alterations in its bioavailability. Moreover, cell membrane damage and production of cytotoxic singlet oxygen (1O2) was proved as main photosensitization mechanism. Furthermore, the application of CDC-mediated PDI on cooked clam reduced weightlessness of cooked clams, inhibited lipid oxidation, and maintained a better appearance, serving as a promising preservation techniques in food industry.
Collapse
Affiliation(s)
- Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
4
|
Li Z, Li Q, Liu S, Han Z, Kong L, Yu H. Integrated Analysis of Coding Genes and Non-coding RNAs Associated with Shell Color in the Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:417-429. [PMID: 33929611 DOI: 10.1007/s10126-021-10034-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Molluscan shell color polymorphism is important in genetic breeding, while the molecular information mechanism for shell coloring is unclear. Here, high-throughput RNA sequencing was used to compare expression profiles of coding and non-coding RNAs (ncRNAs) from Pacific oyster Crassostrea gigas with orange and black shell, which were from an F2 family constructed by crossing an orange shell male with a black shell female. First, 458, 13, and 8 differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified, respectively. Functional analysis suggested that the DEGs were significantly enriched in 9 pathways including tyrosine metabolism and oxidative phosphorylation pathways. Several genes related to melanin synthesis and biomineralization expressed higher whereas genes associated with carotenoid pigmentation or metabolism expressed lower in orange shell oyster. Then, based on the ncRNA analysis, 163 and 20 genes were targeted by 13 and 8 differentially expressed lncRNAs (DELs) and miRNAs (DEMs), severally. Potential DELs-DEMs-DEGs interactions were also examined. Seven DEMs-DEGs pairs were detected, in which tyrosinase-like protein 1 was targeted by lgi-miR-133-3p and lgi-miR-252a and cytochrome P450 was targeted by dme-miRNA-1-3p. These results revealed that melanin synthesis-related genes and miRNAs-mRNA interactions functioned on orange shell coloration, which shed light on the molecular regulation of shell coloration in marine shellfish.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ziqiang Han
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
5
|
Ren G, Chen C, Jin Y, Zhang G, Hu Y, Shen W. A Novel Tyrosinase Gene Plays a Potential Role in Modification the Shell Organic Matrix of the Triangle Mussel Hyriopsis cumingii. Front Physiol 2020; 11:100. [PMID: 32153421 PMCID: PMC7045039 DOI: 10.3389/fphys.2020.00100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Although tyrosinases have been speculated to participate in the shell formation of mollusks, there is still a lack of experimental evidence to support this assumption. In this study, a novel tyrosinase designated HcTyr2 was isolated and characterized from the freshwater mussel Hyriopsis cumingii. The change in HcTyr2 mRNA expression during the process of embryonic development was detected by real-time quantitative PCR. The result showed that the expression of HcTyr2 mRNA was significantly upregulated at the stages of gastrulae and unmatured glochidia (P < 0.05), suggesting that this gene might fundamentally participate in the biogenesis and growth of the initial shell. Meanwhile, the upregulation of HcTyr2 mRNA at the stages of shell regeneration 24 h and 9 days after shell notching in the mantle edge (P < 0.05) implied that it might play an important role in shell periostracum and nacre formation by mediating the cross-linking of quinoproteins to promote the maturity of organic matrix. Additionally, the knockdown of HcTyr2 mRNA by RNA interference resulted in not only the suppression of periostracum growth but also structural disorder of nacre aragonite tablets, as detected by scanning electron microscopy. These results suggested that HcTyr2 might regulate the growth of shell by its oxidative ability to transform soluble matrix proteins into insoluble matrix proteins, then promoting the maturity of the shell organic framework in H. cumingii. In general, our results suggested the importance of HcTyr2 in the shell formation and regeneration of H. cumingii.
Collapse
Affiliation(s)
- Gang Ren
- School of Life Sciences, Shaoxing University, Shaoxing, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chao Chen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Yefei Jin
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Genfang Zhang
- College of Agriculture and Bioengineering, Jinhua Polytechnic, Jinhua, China
| | - Yiwei Hu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Wenying Shen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| |
Collapse
|
6
|
Wei L, Jiang Q, Cai Z, Yu W, He C, Guo W, Wang X. Immune-related molecular and physiological differences between black-shelled and white-shelled Pacific oysters Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2019; 92:64-71. [PMID: 31150764 DOI: 10.1016/j.fsi.2019.05.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/15/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
The black-and-white traits on shells and mantle edges of the Pacific oyster, Crassostrea gigas, are inheritable and correlated, and black shells (melanin pigmentation) are usually found in the Pacific oysters. Based on differentially expressed genes from RNA-Seq and physiological characteristics, in this study, Black-shelled Pacific oysters (BSO) and White-shelled Pacific oysters (WSO) were selected to determine the molecular differences between oysters with obviously different melanin content. The differences in the process of immune recognition and modulation indicated that BSO may be more sensitive to the immune substances. There might have different modulation mode of apoptosis and phagocytosis between BSO and WSO, and caspase-3 might have played a key role in the apoptotic process of BSO. Different oxidation-related pathways were enriched in both BSO and WSO, suggesting the different response strategies of BSO and WSO to oxidative stress. The physiological evidences showed that, compared with WSO, in BSO, the tyrosinase content, the caspase-3 activity and the suppression of hydroxyl radical increased, and the reactive oxygen species concentration decreased. Therefore, immune-related molecular and physiological differences were found between BSO and WSO.
Collapse
Affiliation(s)
- Lei Wei
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Qiuyun Jiang
- School of Agriculture, Ludong University, Yantai, 264025, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhongqiang Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, 265800, China
| | - Wenchao Yu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Cheng He
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Wen Guo
- Marine Biology Institute of Shandong Province, Qingdao, 266104, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
7
|
Xu M, Huang J, Shi Y, Zhang H, He M. Comparative transcriptomic and proteomic analysis of yellow shell and black shell pearl oysters, Pinctada fucata martensii. BMC Genomics 2019; 20:469. [PMID: 31176356 PMCID: PMC6555990 DOI: 10.1186/s12864-019-5807-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The pearl oyster Pinctada fucata martensii (Pfu.), widely cultured in the South China Sea, is a precious source of sea pearls and calcifying materials. A yellow shell variety of Pfu. was obtained after years of artificial breeding. To identify differentially expressed genes between yellow shell and normal black shell pearl oysters, we performed transcriptomic sequencing and proteomic analyses using mantle edge tissues. RESULTS A total of 56,969 unigenes were obtained from transcriptomic, of which 21,610 were annotated, including 385 annotated significant up-regulated genes and 227 significant down-regulated genes in yellow shell oysters (| log2 (fold change) | ≥2 and false discovery rate < 0.001). Tyrosine metabolism, calcium signalling pathway, phototransduction, melanogenesis pathways and rhodopsin related Gene Ontology (GO) terms were enriched with significant differentially expressed genes (DEGs) in transcriptomic. Proteomic sequencing identified 1769 proteins, of which 51 were significantly differentially expressed in yellow shell oysters. Calmodulin, N66 matrix protein, nacre protein and Kazal-type serine protease inhibitor were up-regulated in yellow shell oysters at both mRNA and protein levels, while glycine-rich protein shematrin-2, mantle gene 4, and sulphide: quinone oxidoreductase were down-regulated at two omics levels. Particularly, calmodulin, nacre protein N16.3, mantle gene 4, sulphide: quinone oxidoreductase, tyrosinase-like protein 3, cytochrome P450 3A were confirmed by quantitative real-time PCR. Yellow shell oysters possessed higher total carotenoid content (TCC) compared than black shell oyster based on spectrophotography. CONCLUSIONS The yellow phenotype of pearl oysters, characterised by higher total carotenoids content, may reflect differences in retinal and rhodopsin metabolism, melanogenesis, calcium signalling pathway and biomineralisation. These results provide insights for exploring the relationships between calcium regulation, biomineralisation and yellow shell colour pigmentation.
Collapse
Affiliation(s)
- Meng Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
8
|
Song J, Wang C. Transcriptomic and proteomic analyses of genetic factors influencing adductor muscle coloration in QN Orange scallops. BMC Genomics 2019; 20:363. [PMID: 31072381 PMCID: PMC6509969 DOI: 10.1186/s12864-019-5717-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/18/2019] [Indexed: 11/26/2022] Open
Abstract
Background Color polymorphism, a high-valued trait, is frequently observed in molluscan shellfish. The QN Orange scallop, a new scallop strain successively selected from the interspecific hybrids of the bay scallop (Argopecten irradians irradians) and the Peruvian scallop (Argopecten purpuratus), is distinguished from other scallops by its orange adductor muscles. In this study, to reveal the mechanisms of the formation of adductor muscle coloration in the QN Orange scallops, we compared the proteome and transcriptome of orange adductor muscles of the QN Orange and those of white adductor muscles of the Bohai Red scallop, another strain selected from the interspecific hybrids of the bay scallop and the Peruvian scallop. Results Transcriptomic analysis revealed 416 differentially expressed genes (DEGs) between white and orange adductor muscles, among which 216 were upregulated and 200 were downregulated. Seventy-four differentially expressed proteins (DEPs), including 36 upregulated and 38 downregulated proteins, were identified through label-free proteomics. Among the identified DEGs and DEPs, genes related to carotenoids biosynthesis including apolipophorin, and Cytochrome P450 and those related to melanin biosynthesis including tyrosinase and Ras-related protein Rab-11A were found to express at higher levels in orange adductor muscles. The high expression levels of VPS (vacuolar protein sorting) and TIF (translation initiation factor) in orange adductor muscle tissues indicated that carotenoid accumulation may be affected by proteins outside of the carotenoid pathway. Conclusions Our results implied that the coloration of orange adductor muscles in the QN Orange scallops may be controlled by genes modulating accumulation of carotenoids and melanins. This study may provide valuable information for understanding the mechanisms and pathways underlying adductor muscle coloration in molluscan shellfish. Electronic supplementary material The online version of this article (10.1186/s12864-019-5717-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junlin Song
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Chunde Wang
- Qingdao Agricultural University, Qingdao, 266109, China. .,Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
9
|
Grant HE, Williams ST. Phylogenetic distribution of shell colour in Bivalvia (Mollusca). Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Heather E Grant
- Natural History Museum, Department of Life Sciences, London, UK
- Imperial College London, Department of Life Sciences, London, UK
| | | |
Collapse
|