1
|
Liang P, Zeng Y, Ning J, Wu X, Wang W, Ren J, Wu Q, Yang X, Wang S, Guo Z, Su Q, Zhou X, Turlings TCJ, Xie W, Zhang Y. A plant virus manipulates both its host plant and the insect that facilitates its transmission. SCIENCE ADVANCES 2025; 11:eadr4563. [PMID: 40020061 PMCID: PMC11870061 DOI: 10.1126/sciadv.adr4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
Tomato yellow leaf curl virus (TYLCV), a devastating pathogen of tomato crops, is vectored by the whitefly Bemisia tabaci, yet the mechanisms underlying TYLVC epidemics are poorly understood. We found that TYLCV triggers the up-regulation of two β-myrcene biosynthesis genes in tomato, leading to the attraction of nonviruliferous B. tabaci. We also identified BtMEDOR6 as a key whitefly olfactory receptor of β-myrcene involved in the distinct preference of B. tabaci MED for TYLCV-infected plants. TYLCV inhibits the expression of BtMEDOR6, canceling this preference and thereby facilitating TYLCV transmission to uninfected plants. Greenhouse experiments corroborated the role of β-myrcene in whitefly attraction. These findings reveal a sophisticated viral strategy whereby TYLCV modulates both host plant attractiveness and vector olfactory perception to enhance its spread.
Collapse
Affiliation(s)
- Peng Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yang Zeng
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Jie Ning
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaojie Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenlu Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Ren
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801-3795, USA
| | - Ted C. J. Turlings
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Zhengzhou 475004, China
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Gouda MNR, Subramanian S. Variations in the expression of odorant binding and chemosensory proteins in the developmental stages of whitefly Bemisia tabaci Asia II-1. Sci Rep 2024; 14:15046. [PMID: 38951601 PMCID: PMC11217293 DOI: 10.1038/s41598-024-65785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
The cotton whitefly, Bemisia tabaci, is considered as a species complex with 46 cryptic species, with Asia II-1 being predominant in Asia. This study addresses a significant knowledge gap in the characterization of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Asia II-1. We explored the expression patterns of OBPs and CSPs throughout their developmental stages and compared the motif patterns of these proteins. Significant differences in expression patterns were observed for the 14 OBPs and 14 CSPs of B. tabaci Asia II-1, with OBP8 and CSP4 showing higher expression across the developmental stages. Phylogenetic analysis reveals that OBP8 and CSP4 form distinct clades, with OBP8 appearing to be an ancestral gene, giving rise to the evolution of other odorant-binding proteins in B. tabaci. The genomic distribution of OBPs and CSPs highlights gene clustering on the chromosomes, suggesting functional conservation and evolutionary events following the birth-and-death model. Molecular docking studies indicate strong binding affinities of OBP8 and CSP4 with various odour compounds like β-caryophyllene, α-pinene, β-pinene and limonene, reinforcing their roles in host recognition and reproductive functions. This study elaborates on our understanding of the putative roles of different OBPs and CSPs in B. tabaci Asia II-1, hitherto unexplored. The dynamics of the expression of OBPs and CSPs and their interactions with odour compounds offer scope for developing innovative methods for controlling this global invasive pest.
Collapse
Affiliation(s)
- M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Subramanian
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
3
|
Ribeiro TFL, Oliveira DJDA, da Costa JG, Gutierrez MAM, de Oliveira EJ, Ribeiro Junior KAL, Goulart HF, Riffel A, Santana AEG. Volatile Organic Compounds from Cassava Plants Confer Resistance to the Whitefly Aleurothrixus aepim (Goeldi, 1886). INSECTS 2023; 14:762. [PMID: 37754730 PMCID: PMC10531547 DOI: 10.3390/insects14090762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 09/28/2023]
Abstract
Cassava is an essential tuber crop used to produce food, feed, and beverages. Whitefly pests, including Aleurothrixus aepim (Goeldi, 1886) (Hemiptera: Aleyrodidae), significantly affect cassava-based agroecosystems. Plant odours have been described as potential pest management tools, and the cassava clone M Ecuador 72 has been used by breeders as an essential source of resistance. In this study, we analysed and compared the volatile compounds released by this resistant clone and a susceptible genotype, BRS Jari. Constitutive odours were collected from young plants and analysed using gas chromatography-mass spectrometry combined with chemometric tools. The resistant genotype released numerous compounds with previously described biological activity and substantial amounts of the monoterpene (E)-β-ocimene. Whiteflies showed non-preferential behaviour when exposed to volatiles from the resistant genotype but not the susceptible genotype. Furthermore, pure ocimene caused non-preferential behaviour in whiteflies, indicating a role for this compound in repellence. This report provides an example of the intraspecific variation in odour emissions from cassava plants alongside information on odorants that repel whiteflies; these data can be used to devise whitefly management strategies. A better understanding of the genetic variability in cassava odour constituents and emissions under field conditions may accelerate the development of more resistant cassava varieties.
Collapse
Affiliation(s)
| | | | | | - Miguel Angel Martinez Gutierrez
- Natural Product Research Laboratory (LPqRN), Campus of Engineering and Agrarian Science, Federal University of Alagoas (UFAL), Maceió 57072-900, AL, Brazil
| | | | - Karlos Antonio Lisboa Ribeiro Junior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió 57072-900, AL, Brazil
- Natural Product Research Laboratory (LPqRN), Campus of Engineering and Agrarian Science, Federal University of Alagoas (UFAL), Maceió 57072-900, AL, Brazil
| | - Henrique Fonseca Goulart
- Natural Product Research Laboratory (LPqRN), Campus of Engineering and Agrarian Science, Federal University of Alagoas (UFAL), Maceió 57072-900, AL, Brazil
| | | | - Antonio Euzebio Goulart Santana
- Natural Product Research Laboratory (LPqRN), Campus of Engineering and Agrarian Science, Federal University of Alagoas (UFAL), Maceió 57072-900, AL, Brazil
| |
Collapse
|
4
|
Wang K, Yang Z, Li X, Liu S, Wang L, Zhang H, Yu H. A Hepatocyte Nuclear Factor BtabHNF4 Mediates Desiccation Tolerance and Fecundity in Whitefly (Bemisia tabaci). ENVIRONMENTAL ENTOMOLOGY 2023; 52:138-147. [PMID: 36462170 DOI: 10.1093/ee/nvac103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 06/17/2023]
Abstract
Hepatocyte nuclear factor 4 (HNF4) is essential for glucose homeostasis and lipid metabolism in insects. However, little is known about the role of HNF4 in whiteflies. In the present study, we identified a hepatocyte nuclear factor protein from Bemsia tabaci (Diptera: Drosophilidae) and named it BtabHNF4. The full-length of BtabHNF4 was 3,006 bp, encoding a sequence of 434 amino acids that contains a conserved zinc-finger DNA-binding domain (DBD) and a well-conserved ligand-binding domain (LBD). The temporal and spatial expression showed that BtabHNF4 was highly expressed in the female adult stage and abdominal tissues of B. tabaci. A leaf-mediated RNA interference method was used to explore the function of BtabHNF4 in whiteflies. Our results showed that the knockdown of BtabHNF4 influences the desiccation tolerance, egg production, and egg hatching rate of whiteflies. Additionally, BtabHNF4 silencing significantly inhibited the expression level of vitellogenin. These results expand the function of HNF4 and pave the way for understanding the molecular mechanisms of HNF4 in regulating multiple physiological processes.
Collapse
Affiliation(s)
- Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Zhifang Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Xiang Li
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Shunxiao Liu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| |
Collapse
|
5
|
Nebapure SM, Shankarganesh K, Rajna S, Naga KC, Pandey D, Gambhir S, Praveen KV, Subramanian S. Dynamic changes in virus-induced volatiles in cotton modulate the orientation and oviposition behavior of the whitefly Bemisia tabaci. Front Physiol 2022; 13:1017948. [PMID: 36299257 PMCID: PMC9589893 DOI: 10.3389/fphys.2022.1017948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Manipulation of insect vector behavior by virus-induced plant volatiles is well known. But how the viral disease progression alters the plant volatiles and its effect on vector behavior remains less explored. Our studies tracked changes in volatile profile in progressive infection stages of cotton leaf curl virus (CLCuV) infected plants and their effect on B. tabaci behavior. Significant differences in virus titers were noticed between progressive infection stages showing distinct symptoms. Whiteflies initially settled on CLCuV infected plants, but their preference was shifted to healthy plants over time. GC-MS analysis revealed subtle quantitative/qualitative changes in volatile organic compounds (VOCs) between the healthy and selected CLCuV infection stages. VOCs such as hexanal, (E)-2-hexen-1-ol, (+)-α-pinene, (−)-β-pinene, (Z)-3-hexen-1-ol, (+)-sylvestrene, and (1S,2E,6E, 10R)-3,7,11,11-tetramethylbicycloundeca-2,6-diene (Bicyclogermacrene) were associated with the infection stage showing upward curling of leaves; (E)-2-hexen-1-ol, β-myrcene, β-ocimene, and copaene were associated with the infection stage showing downward curling. Validation studies with eight synthetic VOCs indicated that γ-terpinene elicited attraction to B. tabaci (Olfactometric Preference Index (OPI) = 1.65), while β-ocimene exhibited strong repellence (OPI = 0.64) and oviposition reduction (66.01%–92.55%). Our studies have demonstrated that progression of CLCuV disease in cotton was associated with dynamic changes in volatile profile which influences the behavioural responses of whitefly, B.tabaci. Results have shown that VOCs such as (+)-α-pinene, (−)-β-pinene γ-Terpinene, α-guaiene; 4- hydroxy- 4 methyl-2- pentanone and β-ocimene emitted from Begomovirus infected plants could be the driving force for early attraction and later repellence/oviposition deterrence of B. tabaci on virus-infected plants. The findings of this study offer scope for the management of whitefly, B. tabaci through semiochemicals.
Collapse
Affiliation(s)
| | - Karuppan Shankarganesh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, India
| | - Salim Rajna
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Shubham Gambhir
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Sabtharishi Subramanian
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Sabtharishi Subramanian,
| |
Collapse
|
6
|
Cunniffe NJ, Taylor NP, Hamelin FM, Jeger MJ. Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission. PLoS Comput Biol 2021; 17:e1009759. [PMID: 34968387 PMCID: PMC8754348 DOI: 10.1371/journal.pcbi.1009759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
Many plant viruses are transmitted by insect vectors. Transmission can be described as persistent or non-persistent depending on rates of acquisition, retention, and inoculation of virus. Much experimental evidence has accumulated indicating vectors can prefer to settle and/or feed on infected versus noninfected host plants. For persistent transmission, vector preference can also be conditional, depending on the vector’s own infection status. Since viruses can alter host plant quality as a resource for feeding, infection potentially also affects vector population dynamics. Here we use mathematical modelling to develop a theoretical framework addressing the effects of vector preferences for landing, settling and feeding–as well as potential effects of infection on vector population density–on plant virus epidemics. We explore the consequences of preferences that depend on the host (infected or healthy) and vector (viruliferous or nonviruliferous) phenotypes, and how this is affected by the form of transmission, persistent or non-persistent. We show how different components of vector preference have characteristic effects on both the basic reproduction number and the final incidence of disease. We also show how vector preference can induce bistability, in which the virus is able to persist even when it cannot invade from very low densities. Feedbacks between plant infection status, vector population dynamics and virus transmission potentially lead to very complex dynamics, including sustained oscillations. Our work is supported by an interactive interface https://plantdiseasevectorpreference.herokuapp.com/. Our model reiterates the importance of coupling virus infection to vector behaviour, life history and population dynamics to fully understand plant virus epidemics. Plant virus diseases–which cause devastating epidemics in plant populations worldwide–are most often transmitted by insect vectors. Recent experimental evidence indicates how vectors do not choose between plants at random, but instead can be affected by whether plants are infected (or not). Virus infection can cause plants to “smell” different, because they produce different combinations of volatile chemicals, or “taste” different, due to chemical changes in infected tissues. Vector reproduction rates can also be affected when colonising infected versus uninfected plants. Potential effects on epidemic spread through a population of plants are not yet entirely understood. There are also interactions with the mode of virus transmission. Some viruses can be transmitted after only a brief probe by a vector, whereas others are only picked up after an extended feed on an infected plant. Furthermore there are differences in how long vectors remain able to transmit the virus. This ranges from a matter of minutes, right up to the entire lifetime of the insect, depending on the plant-virus-vector combination under consideration. Here we use mathematical modelling to synthesise all this complexity into a coherent theoretical framework. We illustrate our model via an online interface https://plantdiseasevectorpreference.herokuapp.com/.
Collapse
Affiliation(s)
- Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Nick P. Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Michael J. Jeger
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
7
|
Li YJ, Chen HC, Hong TL, Yan MW, Wang J, Shao ZM, Wu FA, Sheng S, Wang J. Identification of chemosensory genes by antennal transcriptome analysis and expression profiles of odorant-binding proteins in parasitoid wasp Aulacocentrum confusum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100881. [PMID: 34273642 DOI: 10.1016/j.cbd.2021.100881] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
The endoparasitoid wasp, Aulacocentrum confusum (Hymenoptera: Braconidae), is a preponderant natural enemy of the larvae of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae), which is a destructive pest of mulberry trees. We first constructed the antennal transcriptome database of A. confusum. In total, we obtained 48,262,304 clean reads from the dataset and assembled 24,324 unigenes. A total of 12,690 (52.17%) unigenes indicated significant similarity (E-value < 10-5) compared to known protein sequences of other species from the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to determine the functional categories of these genes. A total of 84 putative chemosensory genes were identified from the antennal transcriptome of A. confusum, including 11 putative odorant-binding protein (OBP) genes, six chemosensory protein (CSP) genes, 44 olfactory receptor (OR) genes (including one olfactory co-receptor, Orco), 19 ionotropic receptor (IR) genes, and four sensory neuron membrane protein (SNMP) genes. Results of qPCR assays indicated that among of 11 AconOBPs, nine AconOBP genes were significantly expressed in the antennae of A. confusum adults. AconOBP8 was significantly expressed in the abdomen and AconOBP10 was highly expressed in the thorax. These findings can build a basis for further study on the processes of chemosensory perception in A. confusum at the molecular level.
Collapse
Affiliation(s)
- Yi-Jiangcheng Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Hong-Chao Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Tian-le Hong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Meng-Wen Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Jiao Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Zuo-Min Shao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| |
Collapse
|
8
|
Jeger MJ. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1768. [PMID: 33327457 PMCID: PMC7764944 DOI: 10.3390/plants9121768] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Epidemiology is the science of how disease develops in populations, with applications in human, animal and plant diseases. For plant diseases, epidemiology has developed as a quantitative science with the aims of describing, understanding and predicting epidemics, and intervening to mitigate their consequences in plant populations. Although the central focus of epidemiology is at the population level, it is often necessary to recognise the system hierarchies present by scaling down to the individual plant/cellular level and scaling up to the community/landscape level. This is particularly important for diseases caused by plant viruses, which in most cases are transmitted by arthropod vectors. This leads to range of virus-plant, virus-vector and vector-plant interactions giving a distinctive character to plant virus epidemiology (whilst recognising that some fungal, oomycete and bacterial pathogens are also vector-borne). These interactions have epidemiological, ecological and evolutionary consequences with implications for agronomic practices, pest and disease management, host resistance deployment, and the health of wild plant communities. Over the last two decades, there have been attempts to bring together these differing standpoints into a new synthesis, although this is more apparent for evolutionary and ecological approaches, perhaps reflecting the greater emphasis on shorter often annual time scales in epidemiological studies. It is argued here that incorporating an epidemiological perspective, specifically quantitative, into this developing synthesis will lead to new directions in plant virus research and disease management. This synthesis can serve to further consolidate and transform epidemiology as a key element in plant virus research.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|
9
|
Kafle BD, Morawo T, Fadamiro H. Host-Induced Plant Volatiles Mediate Ability of the Parasitoid Microplitis croceipes to Discriminate Between Unparasitized and Parasitized Heliothis virescens Larvae and Avoid Superparasitism. J Chem Ecol 2020; 46:967-977. [PMID: 32979116 DOI: 10.1007/s10886-020-01218-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/04/2020] [Accepted: 09/07/2020] [Indexed: 11/30/2022]
Abstract
In solitary endoparasitoids, oviposition in a host previously parasitized by a conspecific (superparasitism) leads to intraspecific competition, resulting in the elimination of all but one parasitoid offspring. Therefore, avoidance of parasitized hosts presents a strong selective advantage for such parasitoid species. Parasitoids use herbivore-induced plant volatiles (HIPVs) to find their hosts. In this study, we evaluated the ability of Microplitis croceipes (Hymenoptera: Braconidae) to discriminate between unparasitized and parasitized Heliothis virescens (Lepidoptera: Noctuidae) larvae using cotton plant odors as cues. A combination of behavioral and analytical techniques were used to test two hypotheses: (i) parasitoids will show preference for plant odors induced by unparasitized hosts over odors induced by parasitized hosts, and (ii) the parasitism status of herbivores affects HIPV emission in plants. Heliothis virescens larvae were parasitized for varying durations (0, 2 and 6-days after parasitism (DAP)). In four-choice olfactometer bioassays, female M. croceipes showed greater attraction to plant odors induced by unparasitized hosts compared to plant odors induced by parasitized hosts (2 and 6-DAP). Comparative gas chromatography-mass spectrometry analyses of cotton volatiles indicated reduced emission of 10 out of 21 identified compounds from plants infested by parasitized hosts compared with plants infested by unparasitized hosts. The results suggest that changes in plant volatile emission due to the parasitism status of infesting herbivores affect recruitment of parasitoids. Avoidance of superparasitism using plant odors optimizes host foraging in M. croceipes, and this strategy may be widespread in solitary parasitoid species.
Collapse
Affiliation(s)
- Basu D Kafle
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Tolulope Morawo
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, 34945, USA
| | - Henry Fadamiro
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
10
|
He Y, Wang K, Zeng Y, Guo Z, Zhang Y, Wu Q, Wang S. Analysis of the antennal transcriptome and odorant-binding protein expression profiles of the parasitoid wasp Encarsia formosa. Genomics 2020; 112:2291-2301. [DOI: 10.1016/j.ygeno.2019.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 01/03/2023]
|
11
|
He Y, Liu Y, Wang K, Zhang Y, Wu Q, Wang S. Development and Fitness of the Parasitoid, Encarsia formosa (Hymenoptera: Aphelinidae), on the B and Q of the Sweetpotato Whitefly (Hemiptera: Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2597-2603. [PMID: 31386158 DOI: 10.1093/jee/toz200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 06/10/2023]
Abstract
Encarsia formosa Gahan is an important endoparasitoid of the whitefly, Bemisia tabaci Gennadius. In the present study, we compared the fitness and population parameters of E. formosa when parasitizing the two most invasive and destructive whitefly species in China, the B and Q of B. tabaci. We also studied whether natal host influenced on parasitism and host-feeding capacities of E. formosa on B. tabaci B versus Q. Age-stage life table analysis indicated that E. formosa developmental duration was shorter, fecundity was higher, and longevity was greater on B. tabaci B than on Q. The life table parameters, including the intrinsic rate of increase (r), finite rate of increase (λ), net reproduction rate (R0), and the mean generation time (T), indicated that the fitness of E. formosa on B. tabaci B is higher than B. tabaci Q. We also found that the host species used to rear E. formosa affected the parasitoid's subsequent parasitism and host feeding on B. tabaci B and Q. When E. formosa were reared on B. tabaci B, its subsequent parasitism rate on third-instar nymphs was significantly higher on B. tabaci B than on Q. These results will be useful for managing the biological control of B. tabaci in the field.
Collapse
Affiliation(s)
- Yanyan He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie, Beijing, P. R. China
| | - Yicong Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie, Beijing, P. R. China
| | - Ke Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie, Beijing, P. R. China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie, Beijing, P. R. China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie, Beijing, P. R. China
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie, Beijing, P. R. China
| |
Collapse
|