1
|
Folkertsma R, Charbonnel N, Henttonen H, Heroldová M, Huitu O, Kotlík P, Manzo E, Paijmans JLA, Plantard O, Sándor AD, Hofreiter M, Eccard JA. Genomic signatures of climate adaptation in bank voles. Ecol Evol 2024; 14:e10886. [PMID: 38455148 PMCID: PMC10918726 DOI: 10.1002/ece3.10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024] Open
Abstract
Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (Clethrionomys glareolus) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.
Collapse
Affiliation(s)
- Remco Folkertsma
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Comparative Cognition Unit, Messerli Research InstituteUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Marta Heroldová
- Department of Forest Ecology, FFWTMendel University in BrnoBrnoCzech Republic
| | - Otso Huitu
- Natural Resources Institute FinlandHelsinkiFinland
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and GeneticsCzech Academy of SciencesLiběchovCzech Republic
| | - Emiliano Manzo
- Fondazione Ethoikos, Convento dell'OsservanzaRadicondoliItaly
| | - Johanna L. A. Paijmans
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Present address:
Evolutionary Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Attila D. Sándor
- HUN‐RENClimate Change: New Blood‐Sucking Parasites and Vector‐Borne Pathogens Research GroupBudapestHungary
- Department of Parasitology and ZoologyUniversity of Veterinary MedicineBudapestHungary
- Department of Parasitology and Parasitic DiseasesUniversity of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
| | - Jana A. Eccard
- Animal Ecology, Institute for Biochemistry and Biology, Faculty of ScienceBerlin‐Brandenburg Institute for Biodiversity ResearchUniversity of PotsdamPotsdamGermany
| |
Collapse
|
2
|
Fromm B, Sorger T. Rapid adaptation of cellular metabolic rate to the MicroRNA complements of mammals and its relevance to the evolution of endothermy. iScience 2024; 27:108740. [PMID: 38327773 PMCID: PMC10847693 DOI: 10.1016/j.isci.2023.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/13/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
The metabolic efficiency of mammalian cells depends on the attenuation of intrinsic translation noise by microRNAs. We devised a metric of cellular metabolic rate (cMR), rMR/Mexp optimally fit to the number of microRNA families (mirFam), that is robust to variation in mass and sensitive to body temperature (Tb), consistent with the heat dissipation limit theory of Speakman and Król (2010). Using mirFam as predictor, an Ornstein-Uhlenbeck process of stabilizing selection, with an adaptive shift at the divergence of Boreoeutheria, accounted for 95% of the variation in cMR across mammals. Branchwise rates of evolution of cMR, mirFam and Tb concurrently increased 6- to 7-fold at the divergence of Boreoeutheria, independent of mass. Cellular MR variation across placental mammals was also predicted by the sum of model conserved microRNA-target interactions, revealing an unexpected degree of integration of the microRNA-target apparatus into the energy economy of the mammalian cell.
Collapse
Affiliation(s)
- Bastian Fromm
- The Arctic University Museum of Norway, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Thomas Sorger
- Department of Biology, Roger Williams University, Bristol, RI 02809, USA
| |
Collapse
|
3
|
Grosiak M, Koteja P, Hambly C, Speakman JR, Sadowska ET. Limits to sustained energy intake. XXXIV. Can the heat dissipation limit (HDL) theory explain reproductive aging? J Exp Biol 2024; 227:jeb246592. [PMID: 38264846 DOI: 10.1242/jeb.246592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
According to the heat dissipation limit (HDL) theory, reproductive performance is limited by the capacity to dissipate excess heat. We tested the novel hypotheses that (1) the age-related decline in reproductive performance is due to an age-related decrease of heat dissipation capacity and (2) the limiting mechanism is more severe in animals with high metabolic rates. We used bank voles (Myodes glareolus) from lines selected for high swim-induced aerobic metabolic rate, which have also increased basal metabolic rate, and unselected control lines. Adult females from three age classes - young (4 months), middle-aged (9 months) and old (16 months) - were maintained at room temperature (20°C), and half of the lactating females were shaved to increase heat dissipation capacity. Old females from both selection lines had a decreased litter size, mass and growth rate. The peak-lactation average daily metabolic rate was higher in shaved than in unshaved mothers, and this difference was more profound among old than young and middle-aged voles (P=0.02). In females with large litters, milk production tended to be higher in shaved (least squares mean, LSM±s.e.: 73.0±4.74 kJ day-1) than in unshaved voles (61.8±4.78 kJ day-1; P=0.05), but there was no significan"t effect of fur removal on the growth rate [4.47±2.29 g (4 days-1); P=0.45]. The results provide mixed support of the HDL theory and no support for the hypotheses linking the differences in reproductive aging with either a deterioration in thermoregulatory capability or genetically based differences in metabolic rate.
Collapse
Affiliation(s)
- Marta Grosiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
4
|
Gębczyński AK, Sadowska J, Konarzewski M. Differences in the range of thermoneutral zone between mouse strains: potential effects on translational research. Am J Physiol Regul Integr Comp Physiol 2024; 326:R91-R99. [PMID: 38009211 DOI: 10.1152/ajpregu.00154.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Laboratory mice are commonly used for studies emulating human metabolism. To render human energetics, their ratio of daily (DEE) to basal (BMR) energy expenditure of 1.7-1.8 should be maintained. However, the DEE/BMR ratio strongly depends on whether a given study using a mouse model is carried out above, or below the lower critical temperature (LCT) of the thermoneutral zone, which is rarely considered in translational research. Here, we used mice artificially selected for high or low rates of BMR along with literature data to analyze the effect of ambient temperature on possible systematic bias in DEE/BMR. We demonstrated that the estimated LCTs of mice from the high and low BMR lines differ by more than 7°C. Furthermore, the range of variation of LCTs of mouse strains used in translational research spans from 23 to 33°C. Differences between LCTs in our selected mice and other mouse strains are mirrored by differences in their DEE-to-BMR ratio, on average increasing it at the rate of 0.172°C-1 at temperatures below LCT. Given the wide range of LCTs in different mouse strains, we conclude that the energetic cost of thermoregulation may differ greatly for different mouse strains with a potentially large impact on translational outcomes. Thus, the LCT of a given mouse strain is an important factor that must be considered in designing translational studies.
Collapse
Affiliation(s)
| | - Julita Sadowska
- Faculty of Biology, University of Białystok, Białystok, Poland
| | | |
Collapse
|
5
|
Sørås R, Fjelldal MA, Bech C, van der Kooij J, Eldegard K, Stawski C. High latitude northern bats (Eptesicus nilssonii) reveal adaptations to both high and low ambient temperatures. J Exp Biol 2023; 226:jeb245260. [PMID: 37815465 DOI: 10.1242/jeb.245260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Insectivorous bats at northern latitudes need to cope with long periods of no food for large parts of the year. Hence, bats which are resident at northern latitudes throughout the year will need to undergo a long hibernation season and a short reproductive season where foraging time is limited by extended daylight periods. Eptesicus nilssonii is the northernmost occurring bat species worldwide and hibernates locally when ambient temperatures (Ta) limit prey availability. Therefore, we investigated the energy spent maintaining normothermy at different Ta, as well as how much bats limit energy expenditure while in torpor. We found that, despite being exposed to Ta as low as 1.1°C, bats did not increase torpid metabolic rate, thus indicating that E. nilssonii can survive and hibernate at low ambient temperatures. Furthermore, we found a lower critical temperature (Tlc) of 27.8°C, which is lower than in most other vespertilionid bats, and we found no indication of any metabolic response to Ta up to 37.1°C. Interestingly, carbon dioxide production increased with increasing Ta above the Tlc, presumably caused by a release of retained CO2 in bats that remained in torpor for longer and aroused at Ta above the Tlc. Our results indicate that E. nilssonii can thermoconform at near-freezing Ta, and hence maintain longer torpor bouts with limited energy expenditure, yet also cope with high Ta when sun exposed in roosts during long summer days. These physiological traits are likely to enable the species to cope with ongoing and predicted climate change.
Collapse
Affiliation(s)
- Rune Sørås
- Department of Biology, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Mari Aas Fjelldal
- Department of Biology, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Claus Bech
- Department of Biology, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Jeroen van der Kooij
- Nature Education, Research and Consultancy van der Kooij, Rudsteinveien 67, Slattum NO-1480, Norway
| | - Katrine Eldegard
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Box 5003, Ås NO-1433, Norway
| | - Clare Stawski
- Department of Biology, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| |
Collapse
|
6
|
Levesque DL, Nowack J, Boyles JG. Body Temperature Frequency Distributions: A Tool for Assessing Thermal Performance in Endotherms? Front Physiol 2021; 12:760797. [PMID: 34721082 PMCID: PMC8551754 DOI: 10.3389/fphys.2021.760797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
There is increasing recognition that rather than being fully homeothermic, most endotherms display some degree of flexibility in body temperature. However, the degree to which this occurs varies widely from the relatively strict homeothermy in species, such as humans to the dramatic seasonal hibernation seen in Holarctic ground squirrels, to many points in between. To date, attempts to analyse this variability within the framework generated by the study of thermal performance curves have been lacking. We tested if frequency distribution histograms of continuous body temperature measurements could provide a useful analogue to a thermal performance curve in endotherms. We provide examples from mammals displaying a range of thermoregulatory phenotypes, break down continuous core body temperature traces into various components (active and rest phase modes, spreads and skew) and compare these components to hypothetical performance curves. We did not find analogous patterns to ectotherm thermal performance curves, in either full datasets or by breaking body temperature values into more biologically relevant components. Most species had either bimodal or right-skewed (or both) distributions for both active and rest phase body temperatures, indicating a greater capacity for mammals to tolerate body temperatures elevated above the optimal temperatures than commonly assumed. We suggest that while core body temperature distributions may prove useful in generating optimal body temperatures for thermal performance studies and in various ecological applications, they may not be a good means of assessing the shape and breath of thermal performance in endotherms. We also urge researchers to move beyond only using mean body temperatures and to embrace the full variability in both active and resting temperatures in endotherms.
Collapse
Affiliation(s)
- D L Levesque
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - J Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - J G Boyles
- Cooperative Wildlife Research Laboratory, Center for Ecology, and School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
7
|
Skåra KH, Bech C, Fjelldal MA, van der Kooij J, Sørås R, Stawski C. Energetics of whiskered bats in comparison to other bats of the family Vespertilionidae. Biol Open 2021; 10:271095. [PMID: 34338281 PMCID: PMC8353265 DOI: 10.1242/bio.058640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
Bats inhabit a variety of climate types, ranging from tropical to temperate zones, and environmental differences may therefore affect the basal metabolic rate (BMR) of bats from different populations. In the present study, we provide novel data on the energetics of whiskered bats (Myotis mystacinus), which is the smallest species within Chiroptera measured to date. We investigated the thermoregulatory strategies of M. mystacinus close to the northern limits of this species' distribution range and compared these data to other vespertilionid bats living in different climates. As mammals living in colder areas experience elevated thermoregulatory costs, often leading to an increase in BMR, we hypothesised that BMR of this northern population of whiskered bats would be higher than that of bats from climates with warm environmental temperatures. From a systematic literature search we obtained BMR estimates (N=47) from 24 species within Vespertilionidae. Our metabolic measurements of M. mystacinus in Norway (body mass of 4.4 g; BMR of 1.48 ml O2 g-1 h-1) were not different from other vespertilionid bats, based on the allometric equation obtained from the systematic literature search. Further, there was no effect of environmental temperature on BMR within Vespertilionidae. How these tiny bats adapt metabolically to high latitude living is thus still an open question. Bats do have a suite of physiological strategies used to cope with the varying climates which they inhabit, and one possible factor could be that instead of adjusting BMR they could express more torpor. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Karoline H Skåra
- Department of Biology, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Claus Bech
- Department of Biology, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Mari Aas Fjelldal
- Department of Biology, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | | | - Rune Sørås
- Department of Biology, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Clare Stawski
- Department of Biology, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| |
Collapse
|
8
|
Abstract
Temperature is an important environmental factor governing the ability of organisms to grow, survive and reproduce. Thermal performance curves (TPCs), with some caveats, are useful for charting the relationship between body temperature and some measure of performance in ectotherms, and provide a standardized set of characteristics for interspecific comparisons. Endotherms, however, have a more complicated relationship with environmental temperature, as endothermy leads to a decoupling of body temperature from external temperature through use of metabolic heat production, large changes in insulation and variable rates of evaporative heat loss. This has impeded our ability to model endothermic performance in relation to environmental temperature as well as to readily compare performance between species. In this Commentary, we compare the strengths and weaknesses of potential TPC analogues (including other useful proxies for linking performance to temperature) in endotherms and suggest several ways forward in the comparative ecophysiology of endotherms. Our goal is to provide a common language with which ecologists and physiologists can evaluate the effects of temperature on performance. Key directions for improving our understanding of endotherm thermoregulatory physiology include a comparative approach to the study of the level and precision of body temperature, measuring performance directly over a range of body temperatures and building comprehensive mechanistic models of endotherm responses to environmental temperatures. We believe the answer to the question posed in the title could be 'yes', but only if 'performance' is well defined and understood in relation to body temperature variation, and the costs and benefits of endothermy are specifically modelled.
Collapse
Affiliation(s)
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
9
|
Grosiak M, Koteja P, Bauchinger U, Sadowska ET. Age-Related Changes in the Thermoregulatory Properties in Bank Voles From a Selection Experiment. Front Physiol 2020; 11:576304. [PMID: 33329026 PMCID: PMC7711078 DOI: 10.3389/fphys.2020.576304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023] Open
Abstract
As with many physiological performance traits, the capacity of endotherms to thermoregulate declines with age. Aging compromises both the capacity to conserve or dissipate heat and the thermogenesis, which is fueled by aerobic metabolism. The rate of metabolism, however, not only determines thermogenic capacity but can also affect the process of aging. Therefore, we hypothesized that selection for an increased aerobic exercise metabolism, which has presumably been a crucial factor in the evolution of endothermic physiology in the mammalian and avian lineages, affects not only the thermoregulatory traits but also the age-related changes of these traits. Here, we test this hypothesis on bank voles (Myodes glareolus) from an experimental evolution model system: four lines selected for high swim-induced aerobic metabolism (A lines), which have also increased the basal, average daily, and maximum cold-induced metabolic rates, and four unselected control (C) lines. We measured the resting metabolic rate (RMR), evaporative water loss (EWL), and body temperature in 72 young adult (4 months) and 65 old (22 months) voles at seven ambient temperatures (13-32°C). The RMR was 6% higher in the A than in the C lines, but, regardless of the selection group or temperature, it did not change with age. However, EWL was 12% higher in the old voles. An increased EWL/RMR ratio implies either a compromised efficiency of oxygen extraction in the lungs or increased skin permeability. This effect was more profound in the A lines, which may indicate their increased vulnerability to aging. Body temperature did not differ between the selection and age groups below 32°C, but at 32°C it was markedly higher in the old A-line voles than in those from other groups. As expected, the thermogenic capacity, measured as the maximum cold-induced oxygen consumption, was decreased by about 13% in the old voles from both selection groups, but the performance of old A-line voles was the same as that of the young C-line ones. Thus, the selection for high aerobic exercise metabolism attenuated the adverse effects of aging on cold tolerance, but this advantage has been traded off by a compromised coping with hot conditions by aged voles.
Collapse
Affiliation(s)
- Marta Grosiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Edyta T. Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
10
|
Stawski C, Geiser F. Growing Up in a Changing Climate: How Temperature Affects the Development of Morphological, Behavioral and Physiological Traits of a Marsupial Mammal. Front Physiol 2020; 11:49. [PMID: 32116761 PMCID: PMC7028820 DOI: 10.3389/fphys.2020.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023] Open
Abstract
Climate change is likely to affect many mammalian phenotypes, yet little is known whether and how phenotypic plasticity is involved in responding to thermal challenges during mammalian development. We investigated the effect of continuous cold or warm exposure during development on morphological, behavioral, and functional variables of yellow-footed antechinus (Antechinus flavipes), a semelparous Australian marsupial mammal. Captive-bred young were exposed to two ambient temperatures (T a ), cold (17°C) or warm (25°C), once weaned. Treatments were reversed and metabolic rate (MR) measurements repeated after 2 months. We measured body mass weekly, activity continuously, and MRs over a range of T a once they were adults. Growth rate was similar in both groups, but was faster in males. Antechinus in the warm group were initially more active than the cold group and decreased activity when exposed to cold, whereas the cold group increased activity when exposed to warm. Interestingly, females changed their night-time activity when T a was changed, whereas males changed their daytime activity. MRs were originally lower in the warm group in comparison to the cold group for both sexes and increased slightly for females, but not for males, after being exposed to cold. After exposure to warm T a , the MRs of the cold group decreased significantly over the entire T a -range for both sexes. Our results reveal that temperatures experienced during development can influence behavioral and physiological traits in antechinus. Such phenotypic plasticity is vital for a species that within 1 year is dependent on a single breeding event and experiences a complete population turnover.
Collapse
Affiliation(s)
- Clare Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
11
|
Jastroch M, Seebacher F. Importance of adipocyte browning in the evolution of endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190134. [PMID: 31928187 DOI: 10.1098/rstb.2019.0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothermy changes the relationship between organisms and their environment fundamentally, and it is therefore of major ecological and evolutionary significance. Endothermy is characterized by non-shivering thermogenesis, that is metabolic heat production in the absence of muscular activity. In many eutherian mammals, brown adipose tissue (BAT) is an evolutionary innovation that facilitates non-shivering heat production in mitochondria by uncoupling food-derived substrate oxidation from chemical energy (ATP) production. Consequently, energy turnover is accelerated resulting in increased heat release. The defining characteristics of BAT are high contents of mitochondria and vascularization, and the presence of uncoupling protein 1. Recent insights, however, reveal that a range of stimuli such as exercise, diet and the immune system can cause the browning of white adipocytes, thereby increasing energy expenditure and heat production even in the absence of BAT. Here, we review the molecular mechanisms that cause browning of white adipose tissue, and their potential contribution to thermoregulation. The significance for palaeophysiology lies in the presence of adipose tissue and the mechanisms that cause its browning and uncoupling in all amniotes. Hence, adipocytes may have played a role in the evolution of endothermy beyond the more specific evolution of BAT in eutherians. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Experimental evolution of aerobic exercise performance and hematological traits in bank voles. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:1-9. [DOI: 10.1016/j.cbpa.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 01/19/2023]
|