1
|
Priego Espinosa D, Espinal-Enríquez J, Aldana A, Aldana M, Martínez-Mekler G, Carneiro J, Darszon A. Reviewing mathematical models of sperm signaling networks. Mol Reprod Dev 2024; 91:e23766. [PMID: 39175359 DOI: 10.1002/mrd.23766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Dave Garbers' work significantly contributed to our understanding of sperm's regulated motility, capacitation, and the acrosome reaction. These key sperm functions involve complex multistep signaling pathways engaging numerous finely orchestrated elements. Despite significant progress, many parameters and interactions among these elements remain elusive. Mathematical modeling emerges as a potent tool to study sperm physiology, providing a framework to integrate experimental results and capture functional dynamics considering biochemical, biophysical, and cellular elements. Depending on research objectives, different modeling strategies, broadly categorized into continuous and discrete approaches, reveal valuable insights into cell function. These models allow the exploration of hypotheses regarding molecules, conditions, and pathways, whenever they become challenging to evaluate experimentally. This review presents an overview of current theoretical and experimental efforts to understand sperm motility regulation, capacitation, and the acrosome reaction. We discuss the strengths and weaknesses of different modeling strategies and highlight key findings and unresolved questions. Notable discoveries include the importance of specific ion channels, the role of intracellular molecular heterogeneity in capacitation and the acrosome reaction, and the impact of pH changes on acrosomal exocytosis. Ultimately, this review underscores the crucial importance of mathematical frameworks in advancing our understanding of sperm physiology and guiding future experimental investigations.
Collapse
Affiliation(s)
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Andrés Aldana
- Network Science Institute, Northeastern University, Boston, Massachusetts, USA
| | - Maximino Aldana
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gustavo Martínez-Mekler
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Jorge Carneiro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
2
|
Yu Y, Li L, Luo B, Chen D, Yin C, Jian C, You Q, Wang J, Fang L, Cai D, Sun J. Predicting potential therapeutic targets and small molecule drugs for early-stage lung adenocarcinoma. Biomed Pharmacother 2024; 174:116528. [PMID: 38555814 DOI: 10.1016/j.biopha.2024.116528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) constituting the majority, and its main subtype being lung adenocarcinoma (LUAD). Despite substantial advances in LUAD diagnosis and treatment, early diagnostic biomarkers inadequately fulfill clinical requirements. Thus, we conducted bioinformatics analysis to identify potential biomarkers and corresponding therapeutic drugs for early-stage LUAD patients. Here we identified a total of 10 differentially expressed genes (DEGs) with survival significance through the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Subsequently, we identified a promising small molecule drug, Aminopurvalanol A, based on the 10 key genes using the L1000FWD application, which was validated by molecular docking followed by in vivo and in vitro experiments. The results highlighted TOP2A, CDH3, ASPM, CENPF, SLC2A1, and PRC1 as potential detection biomarkers for early LUAD. We confirmed the efficacy and safety of Aminopurvalanol A, providing valuable insights for the clinical management of LUAD.
Collapse
Affiliation(s)
- Yongxin Yu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lingchen Li
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Bangyu Luo
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Diangang Chen
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Chenrui Yin
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Chunli Jian
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Qiai You
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jianmin Wang
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Ling Fang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Dingqin Cai
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jianguo Sun
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| |
Collapse
|
3
|
Cimini C, Ramal-Sanchez M, Taraschi A, Della Pelle F, Scroccarello A, Belda-Perez R, Valbonetti L, Lanuti P, Marchisio M, D’Atri M, Ortolani C, Papa S, Capacchietti G, Bernabò N, Compagnone D, Barboni B. Catechin versus MoS 2 Nanoflakes Functionalized with Catechin: Improving the Sperm Fertilizing Ability-An In Vitro Study in a Swine Model. Int J Mol Sci 2023; 24:ijms24054788. [PMID: 36902221 PMCID: PMC10003105 DOI: 10.3390/ijms24054788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Nowadays, the adoption of In Vitro Fertilization (IVF) techniques is undergoing an impressive increase. In light of this, one of the most promising strategies is the novel use of non-physiological materials and naturally derived compounds for advanced sperm preparation methods. Here, sperm cells were exposed during capacitation to MoS2/Catechin nanoflakes and catechin (CT), a flavonoid with antioxidant properties, at concentrations of 10, 1, 0.1 ppm. The results showed no significant differences in terms of sperm membrane modifications or biochemical pathways among the groups, allowing the hypothesis that MoS2/CT nanoflakes do not induce any negative effect on the parameters evaluated related to sperm capacitation. Moreover, the addition of CT alone at a specific concentration (0.1 ppm) increased the spermatozoa fertilizing ability in an IVF assay by increasing the number of fertilized oocytes with respect to the control group. Our findings open interesting new perspectives regarding the use of catechins and new materials obtained using natural or bio compounds, which could be used to implement the current strategies for sperm capacitation.
Collapse
Affiliation(s)
- Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Marina Ramal-Sanchez
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Taraschi
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Flavio Della Pelle
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annalisa Scroccarello
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Mario D’Atri
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
- Sharp Solutions Software di D’Atri Mario, Via Udine, 2, Buttrio, 33042 Udine, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Giulia Capacchietti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
- Correspondence:
| | - Dario Compagnone
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
4
|
Two-Player Game in a Complex Landscape: 26S Proteasome, PKA, and Intracellular Calcium Concentration Modulate Mammalian Sperm Capacitation by Creating an Integrated Dialogue-A Computational Analysis. Int J Mol Sci 2020; 21:ijms21176256. [PMID: 32872422 PMCID: PMC7504021 DOI: 10.3390/ijms21176256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Recent experimental findings suggest the involvement of the 26S proteasome, the main protease active in eukaryotic cells, in the process that leads mammalian sperm to become fully fertile, so-called capacitation. Unfortunately, its role in male gametes signaling is still far from being completely understood. For this reason, here, we realized a computational model, based on network theory, with the aim of rebuilding and exploring its signaling cascade. As a result, we found that the 26S proteasome is part of a signal transduction system that recognizes the bicarbonate ion as an input terminal and two intermediate layers of information processing. The first is under the control of the 26S proteasome and protein kinase A (PKA), which are strongly interconnected, while the latter depends on intracellular calcium concentrations. Both are active in modulating sperm function by influencing the protein phosphorylation pattern and then controlling several key events in sperm capacitation, such as membrane and cytoskeleton remodeling. Then, we found different clusters of molecules possibly involved in this pathway and connecting it to the immune system. In conclusion, this work adds a piece to the puzzle of protease and kinase crosstalk involved in the physiology of sperm cells.
Collapse
|
5
|
Ramal-Sanchez M, Bernabo N, Tsikis G, Blache MC, Labas V, Druart X, Mermillod P, Saint-Dizier M. Progesterone induces sperm release from oviductal epithelial cells by modifying sperm proteomics, lipidomics and membrane fluidity. Mol Cell Endocrinol 2020; 504:110723. [PMID: 31972329 DOI: 10.1016/j.mce.2020.110723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
The sperm reservoir is formed after insemination in mammals, allowing sperm storage in the oviduct until their release. We previously showed that physiological concentrations of progesterone (P4) trigger in vitro the sperm release from bovine oviductal epithelial cells (BOECs), selecting a subpopulation of spermatozoa with a higher fertilizing competence. Here, by using Western-Blot, confocal microscopy and Intact Cell MALDI-TOF-Mass Spectrometry strategies, we elucidated the changes derived by the P4-induced release on sperm cells (BOEC-P4 spz). Our findings show that, compared to controls, BOEC-P4 spz presented a decrease in the abundance of Binder of Sperm Proteins (BSP) -3 and -5, suggesting one mechanism by which spermatozoa may detach from BOECs, and thus triggering the membrane remodeling with an increase of the sperm membrane fluidity. Furthermore, an interesting number of membrane lipids and proteins were differentially abundant in BOEC-P4 spz compared with controls.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France; Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo, Italy.
| | - Nicola Bernabo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo, Italy
| | - Guillaume Tsikis
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France
| | - Marie-Claire Blache
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France
| | - Valerie Labas
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France; Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), INRA, CHRU de Tours, Université de Tours, Nouzilly, France
| | - Xavier Druart
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France
| | - Pascal Mermillod
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France
| | - Marie Saint-Dizier
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France; Université de Tours, Faculté des Sciences et des Techniques, Tours, France
| |
Collapse
|
6
|
Cyclin-CDK Complexes are Key Controllers of Capacitation-Dependent Actin Dynamics in Mammalian Spermatozoa. Int J Mol Sci 2019; 20:ijms20174236. [PMID: 31470670 PMCID: PMC6747110 DOI: 10.3390/ijms20174236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Mammalian spermatozoa are infertile immediately after ejaculation and need to undergo a functional maturation process to acquire the competence to fertilize the female egg. During this process, called capacitation, the actin cytoskeleton dramatically changes its organization. First, actin fibers polymerize, forming a network over the anterior part of the sperm cells head, and then it rapidly depolymerizes and disappears during the exocytosis of the acrosome content (the acrosome reaction (AR)). Here, we developed a computational model representing the actin dynamics (AD) process on mature spermatozoa. In particular, we represented all the molecular events known to be involved in AD as a network of nodes linked by edges (the interactions). After the network enrichment, using an online resource (STRING), we carried out the statistical analysis on its topology, identifying the controllers of the system and validating them in an experiment of targeted versus random attack to the network. Interestingly, among them, we found that cyclin-dependent kinase (cyclin–CDK) complexes are acting as stronger controllers. This finding is of great interest since it suggests the key role that cyclin–CDK complexes could play in controlling AD during sperm capacitation, leading us to propose a new and interesting non-genomic role for these molecules.
Collapse
|