1
|
Pellegrino C, Stone EF, Valentini CG, Teofili L. Fetal Red Blood Cells: A Comprehensive Review of Biological Properties and Implications for Neonatal Transfusion. Cells 2024; 13:1843. [PMID: 39594591 PMCID: PMC11593006 DOI: 10.3390/cells13221843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Transfusion guidelines worldwide include recommendations regarding the storage length, irradiation, or even donor cytomegalovirus serostatus of red blood cell (RBC) units for anemic neonates. Nevertheless, it is totally overlooked that RBCs of these patients fundamentally differ from those of older children and adults. These differences vary from size, shape, hemoglobin composition, and oxygen transport to membrane characteristics, cellular metabolism, and lifespan. Due to these profound dissimilarities, repeated transfusions of adult RBCs in neonates deeply modify the physiology of circulating RBC populations. Unsurprisingly, the number of RBC transfusions in preterm neonates, particularly if born before 28 weeks of gestation, predicts morbidity and mortality. This review provides a comprehensive description of the biological properties of fetal, cord blood, and neonatal RBCs, including the implications that neonatal RBCs, and their replacement by adult RBCs, may have for perinatal disease pathophysiology.
Collapse
Affiliation(s)
- Claudio Pellegrino
- Dipartimento di Scienze di Laboratorio ed Ematologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (C.P.); (C.G.V.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Elizabeth F. Stone
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Caterina Giovanna Valentini
- Dipartimento di Scienze di Laboratorio ed Ematologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (C.P.); (C.G.V.)
| | - Luciana Teofili
- Dipartimento di Scienze di Laboratorio ed Ematologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (C.P.); (C.G.V.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
2
|
Willie-Permor D, Real M, Zarrintan S, Gaffey AC, Malas MB. Perioperative Blood Transfusion Is Associated with Worse 30-Day Mortality and Complications After Thoracic Endovascular Aortic Repair. Ann Vasc Surg 2024; 101:15-22. [PMID: 38154494 DOI: 10.1016/j.avsg.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/23/2023] [Accepted: 10/22/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND It is not uncommon for patients requiring vascular surgery, and in particular aortic surgery, to have increased requirements for blood transfusion. However, studies examining the effects of perioperative transfusion for thoracic endovascular aortic repair (TEVAR) are limited. Using large multicenter data, we aimed to study the impact of perioperative blood transfusion on 30-day mortality and complications after TEVAR. METHODS A total of 9,263 patients who underwent TEVAR were included in this retrospective study from the multicenter Vascular Quality Initiative cohort spanning 2010-2022. We excluded patients who were post-traumatic, anemic (World Health Organization criteria: hemoglobin < 12 g/dl and < 13 g/dl for females and males respectively), who underwent open conversions or presented with ruptured aneurysms. Primary outcomes were 30-day mortality and stroke. Secondary outcomes were postop congestive heart failure (CHF), respiratory complications, spinal cord ischemia (SCI), myocardial infarction (MI) and any postop complications (composite variable). Poisson regression with robust variance was performed to determine the risk of post op outcomes comparing patients who received red blood cells (RBCs) to those who did not. RESULTS Comparing patients without any transfusion (n = 8,223), perioperative transfusion of 1-3 units (n = 735) was associated with 3-fold increased risk of 30-day mortality (adjusted relative risk [aRR] 3.30, 95% confidence interval [CI] 2.39,4.57, P < 0.001), almost 2-fold increased risk of stroke (aRR 1.98, 95% CI 1.24,3.15, P = 0.004), 2.7-fold increased risk of SCI (aRR 2.66, 95% CI 1.87-3.77, P < 0.001), 3-fold increased risk of MI (aRR 3.40, 95% CI 2.30, 5.03, P < 0.001), 2-fold increased risk of CHF (aRR 2.04, 95% CI 1.09, 3.83, P = 0.03), 3.5-fold increased risk of respiratory complications (aRR 3.49, 95% CI 2.67, 4.56, P < 0.001), and 2-fold increased risk of any postop complication (aRR 2.36, 95% CI 2.04, 2.73, P < 0.001). These effects were even higher in patients transfused 4 or more units (n = 305) than seen in the effects seen in those transfused 1-3 units; comparing each group to patients who received none. CONCLUSIONS In hemodynamically stable patients undergoing TEVAR for nonemergent/emergent and nontraumatic indications, transfusion of any amount perioperatively is associated with worse 30-day mortality, stroke, SCI, MI, CHF, and respiratory complications. A conservative transfusion approach and multidisciplinary care to identify complications and rescue TEVAR patients who receive any amount of RBCs perioperatively might help improve outcomes. Future studies to understand the mechanisms of outcomes for transfused patients are needed.
Collapse
Affiliation(s)
- Daniel Willie-Permor
- Division of Vascular and Endovascular Surgery, Department of Surgery, Center for Learning and Excellence in Vascular & Endovascular Research (CLEVER), University of California San Diego (UCSD), La Jolla, CA
| | - Marcos Real
- Division of Vascular and Endovascular Surgery, Department of Surgery, Center for Learning and Excellence in Vascular & Endovascular Research (CLEVER), University of California San Diego (UCSD), La Jolla, CA
| | - Sina Zarrintan
- Division of Vascular and Endovascular Surgery, Department of Surgery, Center for Learning and Excellence in Vascular & Endovascular Research (CLEVER), University of California San Diego (UCSD), La Jolla, CA
| | - Ann C Gaffey
- Division of Vascular and Endovascular Surgery, Department of Surgery, Center for Learning and Excellence in Vascular & Endovascular Research (CLEVER), University of California San Diego (UCSD), La Jolla, CA
| | - Mahmoud B Malas
- Division of Vascular and Endovascular Surgery, Department of Surgery, Center for Learning and Excellence in Vascular & Endovascular Research (CLEVER), University of California San Diego (UCSD), La Jolla, CA.
| |
Collapse
|
3
|
Barshtein G, Gural A, Arbell D, Barkan R, Livshits L, Pajic-Lijakovic I, Yedgar S. Red Blood Cell Deformability Is Expressed by a Set of Interrelated Membrane Proteins. Int J Mol Sci 2023; 24:12755. [PMID: 37628935 PMCID: PMC10454903 DOI: 10.3390/ijms241612755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Red blood cell (RBC) deformability, expressing their ability to change their shape, allows them to minimize their resistance to flow and optimize oxygen delivery to the tissues. RBC with reduced deformability may lead to increased vascular resistance, capillary occlusion, and impaired perfusion and oxygen delivery. A reduction in deformability, as occurs during RBC physiological aging and under blood storage, is implicated in the pathophysiology of diverse conditions with circulatory disorders and anemias. The change in RBC deformability is associated with metabolic and structural alterations, mostly uncharacterized. To bridge this gap, we analyzed the membrane protein levels, using mass spectroscopy, of RBC with varying deformability determined by image analysis. In total, 752 membrane proteins were identified. However, deformability was positively correlated with the level of only fourteen proteins, with a highly significant inter-correlation between them. These proteins are involved in membrane rafting and/or the membrane-cytoskeleton linkage. These findings suggest that the reduction of deformability is a programmed (not arbitrary) process of remodeling and shedding of membrane fragments, possibly mirroring the formation of extracellular vesicles. The highly significant inter-correlation between the deformability-expressing proteins infers that the cell deformability can be assessed by determining the level of a few, possibly one, of them.
Collapse
Affiliation(s)
- Gregory Barshtein
- Department of Biochemistry, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Alexander Gural
- Blood Bank, Hadassah University Hospital, Jerusalem 9112001, Israel;
| | - Dan Arbell
- Pediatric Surgery, Hadassah University Hospital, Jerusalem 9112001, Israel;
| | - Refael Barkan
- Department of Digital Medical Technologies, Holon Institute of Technology, Holon 5810201, Israel;
| | - Leonid Livshits
- Red Blood Cell Research Group, Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, 8057 Zürich, Switzerland;
| | | | - Saul Yedgar
- Department of Biochemistry, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
4
|
Du J, Wang J, Xu T, Yao H, Yu L, Huang D. Hemostasis Strategies and Recent Advances in Nanomaterials for Hemostasis. Molecules 2023; 28:5264. [PMID: 37446923 DOI: 10.3390/molecules28135264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The development of materials that effectively stop bleeding and prevent wound adhesion is essential in both military and medical fields. However, traditional hemostasis methods, such as cautery, tourniquets, and gauze, have limitations. In recent years, new nanomaterials have gained popularity in medical and health fields due to their unique microstructural advantages. Compared to traditional materials, nanomaterials offer better adhesion, versatility, and improved bioavailability of traditional medicines. Nanomaterials also possess advantages such as a high degree and stability, self-degradation, fewer side effects, and improved wound healing, which make them ideal for the development of new hemostatic materials. Our review provides an overview of the currently used hemostatic strategies and materials, followed by a review of the cutting-edge nanomaterials for hemostasis, including nanoparticles and nanocomposite hydrogels. The paper also briefly describes the challenges faced by the application of nanomaterials for hemostasis and the prospects for their future development.
Collapse
Affiliation(s)
- Jian Du
- Suining Municipal Hospital of Traditional Chinese Medicine, Suining 629000, China
| | - Jingzhong Wang
- Suining Municipal Hospital of Traditional Chinese Medicine, Suining 629000, China
| | - Tao Xu
- Suining Municipal Hospital of Traditional Chinese Medicine, Suining 629000, China
| | - Hai Yao
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China
| | - Lili Yu
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
5
|
Han K, Ma S, Sun J, Xu M, Qi X, Wang S, Li L, Li X. In silico modeling of patient-specific blood rheology in type 2 diabetes mellitus. Biophys J 2023; 122:1445-1458. [PMID: 36905122 PMCID: PMC10147843 DOI: 10.1016/j.bpj.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/16/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Increased blood viscosity in type 2 diabetes mellitus (T2DM) is a risk factor for the development of insulin resistance and diabetes-related vascular complications; however, individuals with T2DM exhibit heterogeneous hemorheological properties, including cell deformation and aggregation. Using a multiscale red blood cell (RBC) model with key parameters derived from patient-specific data, we present a computational study of the rheological properties of blood from individual patients with T2DM. Specifically, one key model parameter, which determines the shear stiffness of the RBC membrane (μ) is informed by the high-shear-rate blood viscosity of patients with T2DM. At the same time, the other, which contributes to the strength of the RBC aggregation interaction (D0), is derived from the low-shear-rate blood viscosity of patients with T2DM. The T2DM RBC suspensions are simulated at different shear rates, and the predicted blood viscosity is compared with clinical laboratory-measured data. The results show that the blood viscosity obtained from clinical laboratories and computational simulations are in agreement at both low and high shear rates. These quantitative simulation results demonstrate that the patient-specific model has truly learned the rheological behavior of T2DM blood by unifying the mechanical and aggregation factors of the RBCs, which provides an effective way to extract quantitative predictions of the rheological properties of the blood of individual patients with T2DM.
Collapse
Affiliation(s)
- Keqin Han
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shuhao Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Jiehui Sun
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Xiaojing Qi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China.
| | - Xuejin Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
7
|
Carter PW, Dunham AJ. Modelling haemoglobin incremental loss on chronic red blood cell transfusions. Vox Sang 2022; 117:831-838. [PMID: 35238052 DOI: 10.1111/vox.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Understanding the impact of red blood cell (RBC) lifespan, initial RBC removal, and transfusion intervals on patient haemoglobin (Hb) levels and total iron exposure is not accessible for chronic transfusion scenarios. This article introduces the first model to help clinicians optimize chronic transfusion intervals to minimize transfusion frequency. MATERIALS AND METHODS Hb levels and iron exposure from multiple transfusions were calculated from Weibull residual lifespan distributions, the fraction effete RBC removed within 24-h (Xe ) and the nominal Hb increment. Two-unit transfusions of RBCs initiated at patient [Hb] = 7 g/dl were modelled for different RBC lifespans and transfusion intervals from 18 to 90 days, and Xe from 0.1 to 0.5. RESULTS Increased Xe requires shorter transfusion intervals to achieve steady-state [Hb] of 9 g/dl as follows: 30 days between transfusions at Xe = 0.5, 36 days at Xe = 0.4, 42 days at Xe = 0.3, 48 days at Xe = 0.2 and 54 days at Xe = 0.1. The same transfusion interval/Xe pairs result in a steady-state [Hb] = 8 g/dl when the RBC lifespan was halved. By reducing transfused RBC increment loss from 30% to 10%, annual transfusions were decreased by 22% with iron addition decreased by 24%. Acute dosing of iron occurs at the higher values of Xe on the day after a transfusion event. CONCLUSION Systematic trends in fractional Hb incremental loss Xe have been modelled and have a significant and calculatable impact on transfusion intervals and associated introduction of iron.
Collapse
|
8
|
Sun J, Han K, Xu M, Li L, Qian J, Li L, Li X. Blood Viscosity in Subjects With Type 2 Diabetes Mellitus: Roles of Hyperglycemia and Elevated Plasma Fibrinogen. Front Physiol 2022; 13:827428. [PMID: 35283762 PMCID: PMC8914209 DOI: 10.3389/fphys.2022.827428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
The viscosity of blood is an indicator in the understanding and treatment of disease. An elevated blood viscosity has been demonstrated in patients with Type 2 Diabetes Mellitus (T2DM), which might represent a risk factor for cardiovascular complications. However, the roles of glycated hemoglobin (HbA1c) and plasma fibrinogen levels on the elevated blood viscosity in subjects with T2DM at different chronic glycemic conditions are still not clear. Here, we evaluate the relationship between the blood viscosity and HbA1c as well as plasma fibrinogen levels in patients with T2DM. The experimental data show that the mean values of the T2DM blood viscosity are higher in groups with higher HbA1c levels, but the correlation between the T2DM blood viscosity and the HbA1c level is not obvious. Instead, when we investigate the influence of plasma fibrinogen level on the blood viscosity in T2DM subjects, we find that the T2DM blood viscosity is significantly and positively correlated with the plasma fibrinogen level. Further, to probe the combined effects of multiple factors (including the HbA1c and plasma fibrinogen levels) on the altered blood viscosity in T2DM, we regroup the experimental data based on the T2DM blood viscosity values at both the low and high shear rates, and our results suggest that the influence of the elevated HbA1c level on blood viscosity is quite limited, although it is an important indicator of glycemic control in T2DM patients. Instead, the elevated blood hematocrit, the enhanced red blood cell (RBC) aggregation induced by the increased plasma fibrinogen level, and the reduced RBC deformation play key roles in the determination of blood viscosity in T2DM. Together, these experimental results are helpful in identifying the key determinants for the altered T2DM blood viscosity, which can be used in future studies of the hemorheological disturbances of T2DM patients.
Collapse
Affiliation(s)
- Jiehui Sun
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Keqin Han
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Lujuan Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jin Qian
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Guizouarn H, Barshtein G. Editorial: Red Blood Cell Vascular Adhesion and Deformability, Volume II. Front Physiol 2022; 13:849608. [PMID: 35250645 PMCID: PMC8896436 DOI: 10.3389/fphys.2022.849608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Helene Guizouarn
- Institut de Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Gregory Barshtein
- Biochemical Department, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Gregory Barshtein
| |
Collapse
|
10
|
Hu WS, Lin CL. Increased risk of suicide attempt among patients receiving blood transfusion: A propensity matched analysis. Medicine (Baltimore) 2021; 100:e28335. [PMID: 34967365 PMCID: PMC8718195 DOI: 10.1097/md.0000000000028335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
To examine whether the association between blood transfusion and suicide attempt exists.Utilizing the national insurance database from Taiwan and propensity score matching analysis, the incidence of suicide attempt in a cohort with blood transfusion versus controls was compared.The key finding is that higher incidence of suicide attempt in blood transfusion than control group (with an adjusted hazard ratio of 1.79 with 95% confidence interval, 1.72-1.88) after adjusted for the covariates.Patients receiving blood transfusion are an increased risk of subsequent suicide attempt.
Collapse
Affiliation(s)
- Wei-Syun Hu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Bibic A, Sordia T, Henningsson E, Knutsson L, Ståhlberg F, Wirestam R. Effects of red blood cells with reduced deformability on cerebral blood flow and vascular water transport: measurements in rats using time-resolved pulsed arterial spin labelling at 9.4 T. Eur Radiol Exp 2021; 5:53. [PMID: 34935093 PMCID: PMC8692551 DOI: 10.1186/s41747-021-00243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Background Our aim was to introduce damaged red blood cells (RBCs) as a tool for haemodynamic provocation in rats, hypothesised to cause decreased cerebral blood flow (CBF) and prolonged water capillary transfer time (CTT), and to investigate whether expected changes in CBF could be observed and if haemodynamic alterations were reflected by the CTT metric. Methods Damaged RBCs exhibiting a mildly reduced deformability were injected to cause aggregation of RBCs. Arterial spin labelling (ASL) magnetic resonance imaging experiments were performed at 9.4 T. Six datasets (baseline plus five datasets after injection) were acquired for each animal in a study group and a control group (13 and 10 female adult Wistar rats, respectively). For each dataset, ASL images at ten different inversion times were acquired. The CTT model was adapted to the use of a measured arterial input function, implying the use of a realistic labelling profile. Repeated measures ANOVA was used (alpha error = 0.05). Results After injection, significant differences between the study group and control group were observed for relative CBF in white matter (up to 20 percentage points) and putamen (up to 18–20 percentage points) and for relative CTT in putamen (up to 35–40 percentage points). Conclusions Haemodynamic changes caused by injection of damaged RBCs were observed by ASL-based CBF and CTT measurements. Damaged RBCs can be used as a tool for test and validation of perfusion imaging modalities. CTT model fitting was challenging to stabilise at experimental signal-to-noise ratio levels, and the number of free parameters was minimised. Supplementary Information The online version contains supplementary material available at 10.1186/s41747-021-00243-z.
Collapse
Affiliation(s)
- Adnan Bibic
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Tea Sordia
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Freddy Ståhlberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Kupryashov AA, Kuksina EV, Kchycheva GA, Haydarov GA. Impact of anemia on outcomes in on-pump coronary artery bypass surgery patients. KARDIOLOGIIA 2021; 61:42-48. [PMID: 34882077 DOI: 10.18087/cardio.2021.11.n1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Aim To study the contribution of preoperative anemia to the prognosis of adverse clinical events (mortality, complications, transfusion) in patients with ischemic heart disease (IHD) after myocardial revascularization in the conditions of artificial circulation.Material and methods This retrospective cohort study included 1 133 patients with IHD who had undergone isolated myocardial revascularization in the conditions of artificial circulation in 2019. The primary endpoints were mortality and a composite endpoint that included, in addition to mortality, cases of acute coronary syndrome, heart, respiratory and renal failure, neurological deficit, and infectious complications. The secondary endpoints were duration of artificial ventilation of more than 12 h, duration of stay in the resuscitation and intensive care unit (RICU) of more than one day, and duration of postoperative inpatient treatment of more than 7 days. Results Preoperative anemia was found in 196 (17.3 %) patients. The anemia was not associated with mortality but increased the risk of the composite endpoint, prolonged artificial ventilation, stay in RICU for more than one day, and red blood cell transfusion. Despite the absence of a relationship between red blood cell transfusion and mortality, the use of transfusion was associated with increased risks of the composite endpoint and prolonged stay in the RICU and hospital.Conclusion Preoperative anemia is a risk factor for adverse outcomes of myocardial revascularization in the conditions of artificial circulation. Timely treatment of preoperative anemia may improve outcomes of the treatment.
Collapse
Affiliation(s)
- A A Kupryashov
- Bakoulev`s Center for Cardiovascular Surgery, Moscow, Russia
| | - E V Kuksina
- Bakoulev`s Center for Cardiovascular Surgery, Moscow, Russia
| | - G A Kchycheva
- Bakoulev`s Center for Cardiovascular Surgery, Moscow, Russia
| | - G A Haydarov
- Bakoulev`s Center for Cardiovascular Surgery, Moscow, Russia
| |
Collapse
|
13
|
Barshtein G, Pajic-Lijakovic I, Gural A. Deformability of Stored Red Blood Cells. Front Physiol 2021; 12:722896. [PMID: 34690797 PMCID: PMC8530101 DOI: 10.3389/fphys.2021.722896] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Red blood cells (RBCs) deformability refers to the cells’ ability to adapt their shape to the dynamically changing flow conditions so as to minimize their resistance to flow. The high red cell deformability enables it to pass through small blood vessels and significantly determines erythrocyte survival. Under normal physiological states, the RBCs are attuned to allow for adequate blood flow. However, rigid erythrocytes can disrupt the perfusion of peripheral tissues and directly block microvessels. Therefore, RBC deformability has been recognized as a sensitive indicator of RBC functionality. The loss of deformability, which a change in the cell shape can cause, modification of cell membrane or a shift in cytosol composition, can occur due to various pathological conditions or as a part of normal RBC aging (in vitro or in vivo). However, despite extensive research, we still do not fully understand the processes leading to increased cell rigidity under cold storage conditions in a blood bank (in vitro aging), In the present review, we discuss publications that examined the effect of RBCs’ cold storage on their deformability and the biological mechanisms governing this change. We first discuss the change in the deformability of cells during their cold storage. After that, we consider storage-related alterations in RBCs features, which can lead to impaired cell deformation. Finally, we attempt to trace a causal relationship between the observed phenomena and offer recommendations for improving the functionality of stored cells.
Collapse
Affiliation(s)
- Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
14
|
Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under "Quasi-Diabetic" Conditions? Biomolecules 2021; 11:biom11070992. [PMID: 34356616 PMCID: PMC8301930 DOI: 10.3390/biom11070992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells’ ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic”. Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells’ functional properties during storage.
Collapse
Affiliation(s)
- Leonid Livshits
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, CH-8057 Zurich, Switzerland;
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- Correspondence: ; Tel.: +972-2-6758309
| | - Dan Arbell
- Pediatric Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hélène Guizouarn
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, Inserm, 28 Av. Valrose, 06100 Nice, France;
| |
Collapse
|
15
|
Arbell D, Bin-Nun A, Zugayar D, Eventov-Friedman S, Chepel N, Srebnik N, Hamerman C, Wexler TLR, Barshtein G, Yedgar S. Deformability of cord blood vs. newborns' red blood cells: implication for blood transfusion. J Matern Fetal Neonatal Med 2021; 35:3270-3275. [PMID: 33541145 DOI: 10.1080/14767058.2020.1818203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM About 50% of premature neonates (PN) are treated with transfusion of packed red blood cells (PRBC) collected from adult donors, which has been suggested to potentially provoke PN pathologies, characterized as blood circulation disorders. RBC have properties that are key determinants of blood circulation, primarily the cell deformability. In previous studies we have shown that transfusion of RBC with reduced deformability impaired the transfusion outcome. Although RBC of PN (PN-RBC) are larger, and their microvessels are narrower than those of adults, their blood circulation is very efficient, pointing to the possibility that the deformability of adults' PRBC is inferior to that of PN-RBC, and that treating PN with PRBC transfusion might, therefore, introduce a risk to the recipients. This would infer that PN should be given RBC with high deformability. However, since using PN-RBC is not feasible, the use of cord blood RBC (CB-RBC) is a sound alternative, assuming that the deformability of CB-RBC is comparable to that of PN-RBC.The present study is aimed at testing this hypothesis. METHODS We compared the deformability of (1) RBC of PN vs. the PRBC they received, and (2) PN-RBC vs. their autologous CB-RBC. RESULTS 1. The deformability of the transfused PRBC is indeed inferior to that of PN-RBC. 2. The deformability of CB-RBC is equivalent to that of PN-RBC. CONCLUSION This study supports the notion that treating PN with transfusion of adults' PRBC has the potential to introduce a circulatory risk to the recipients, while CB-RBC, with their superior deformability, provides a safer and more effective PN-specific transfusion therapy.
Collapse
Affiliation(s)
- Dan Arbell
- Department of Pediatric Surgery, Hadassah University Hospital, Jerusalem, Israel
| | - Alona Bin-Nun
- Department of Neonatology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Diaa Zugayar
- Department of Pediatric Surgery, Hadassah University Hospital, Jerusalem, Israel
| | | | - Natalia Chepel
- Department of Neonatology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Naama Srebnik
- Department of Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Cathy Hamerman
- Department of Neonatology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Tanja L R Wexler
- Faculty of Medicine, Department of Biochemistry, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Gregory Barshtein
- Faculty of Medicine, Department of Biochemistry, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Saul Yedgar
- Faculty of Medicine, Department of Biochemistry, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| |
Collapse
|
16
|
Sherstyukova E, Chernysh A, Moroz V, Kozlova E, Sergunova V, Gudkova O. The relationship of membrane stiffness, cytoskeleton structure and storage time of pRBCs. Vox Sang 2020; 116:405-415. [PMID: 33103792 DOI: 10.1111/vox.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES In clinical practice, it has been shown that transfusion of packed red blood cells (pRBCs) with late shelf life increases the risk of post-transfusion complications. OBJECTIVE To study relationship of membrane stiffness, cytoskeleton structure and storage time of pRBCs. MATERIALS AND METHODS pRBCs were processed and stored according to blood bank procedure, for 42 days, at +4°C; pRBC samples were taken on days 3, 12, 19, 21, 24, 28, 35 and 42. Cytoskeleton images and membrane stiffness were studied using atomic force microscope. RESULTS In the course of the pRBC storage, the cytoskeleton network configuration underwent structural changes. Simultaneously, pRBC membrane stiffness was increasing, with the correlation coefficient 0·88. Until 19 days, the stiffness grew slowly, in 19-24 days there occurred a transition period, after which its growth rate was three times higher than the initial. A chain of pathological processes developed in pRBC during long storage: pH reduction (linked to increased oxidative stress), then cytoskeletal destruction and an associated increase in pRBC membrane stiffness. CONCLUSION During prolonged storage of pRBCs and their acidification, there is a progression of pRBC cytoskeletal changes and associated increase of membrane stiffness, observed to increase in rate after days 19-24. Mutual measurements of cytoskeletal integrity and membrane stiffness may be useful quality assessment tool to study the molecular mechanisms of RBC structural degradation during storage.
Collapse
Affiliation(s)
- Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aleksandr Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Viktor Moroz
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| | - Elena Kozlova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| | - Olga Gudkova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| |
Collapse
|
17
|
Tan JKS, Wei X, Wong PA, Fang J, Kim S, Agrawal R. Altered red blood cell deformability-A novel hypothesis for retinal microangiopathy in diabetic retinopathy. Microcirculation 2020; 27:e12649. [PMID: 32663357 DOI: 10.1111/micc.12649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Impaired red blood cell (RBC) deformability impedes tissue perfusion. This study aims to investigate RBC biomechanics in type 2 diabetes mellitus (DM) patients with different grades of diabetic retinopathy (DR) and to correlate RBC deformability with hematological and serum biochemical markers. METHODS This cross-sectional study included 86 type 2 DM patients (31 with no DR, 31 with non-proliferative DR [NPDR] and 24 with proliferative DR [PDR]) and 32 control subjects. RBC deformability was measured by a microfluidic cross-slot channel (elongation index, EI). Venous blood samples were taken for assessment of hematological and serum biochemical markers. RESULTS RBC deformability showed significant reduction in diabetic patients, being lowest in the PDR group, followed by NPDR and DM with no DR groups, and highest in control group (P = .018). RBC deformability was not affected by age or gender but showed significant associations with certain hematological and serum biochemical markers. In the regression analysis controlling for DM status, urea concentration and reticulocyte count were shown to be negatively associated with EI. CONCLUSION Impaired RBC deformability measured by a microfluidic cross-slot channel in DM patients with different grades of DR underscores the contribution of RBC rheological properties to the pathogenesis and progression of DM related microangiopathy.
Collapse
Affiliation(s)
- Justin Kok Soon Tan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Xin Wei
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Peter Agustinus Wong
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Jie Fang
- School of Pharmacy, Nantong University, Nantong, China
| | - Sangho Kim
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Rupesh Agrawal
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore.,Department of Mechanical Engineering, University College London, London, UK.,Moorfields Eye Hospital, NHS Foundation Trust, London, UK.,Singapore Eye Research Institute, Singapore, Singapore
| |
Collapse
|
18
|
Hudcova J, Qasmi ST, Ruthazer R, Waqas A, Haider SB, Schumann R. Early Allograft Dysfunction Following Liver Transplant: Impact of Obesity, Diabetes, and Red Blood Cell Transfusion. Transplant Proc 2020; 53:119-123. [PMID: 32690312 DOI: 10.1016/j.transproceed.2020.02.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE We examined the role of obesity and intraoperative red blood cell (RBC) and platelet transfusion in early allograft dysfunction (EAD) following liver transplantation (LT). METHODS This is a retrospective analysis of 239 adult deceased-donor LT recipients over a 10-year period. EAD was defined by Olthoff's criteria. Data collection included donor (D) and recipient (R) age, body mass index (BMI) ≥ 35 kg/m2, diabetes mellitus, allograft macrosteatosis, and intraoperative (RBC) and platelet administration. We employed logistic regression to evaluate associations of these factors with EAD. Results are presented as odds ratios (OR) and 95% confidence intervals (CI) with corresponding P values. A P ≤ .05 was considered statistically significant. RESULTS EAD occurred in 85 recipients (36%). Macrosteatosis data were available for 199 donors. In the multivariate analyses, BMI-D ≥ 35 kg/m2 increased the odds of developing EAD by 156% in the entire cohort (OR 2.56, 95% CI 1.09-6.01) and by 187% in recipients with macrosteatosis data (n = 199, OR 2.87, 95% CI 1.15-7.15). Each unit of RBCs increased the odds for EAD by 8% (OR 1.08, 95% CI 1.02-1.14) and, for the subgroup of 238 recipients with macrosteatosis data, by 9% (OR 1.09, 95% CI 1.02-1.16). CONCLUSION We found a significant independent association of donor obesity and intraoperative RBC transfusion with EAD but no such association for platelet administration, MELD score, age, recipient obesity, and diabetes.
Collapse
Affiliation(s)
- Jana Hudcova
- Department of Anesthesiology and Perioperative Medicine, Tufts University School of Medicine, West Roxbury, Massachusetts, United States; Departments of Anesthesiology, Pulmonary Critical Care Medicine and Surgical Critical Care Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts, United States
| | - Syed Talha Qasmi
- Department of Medicine, HCA Houston Health Care Kingwood, Kingwood, Texas, United States
| | - Robin Ruthazer
- Biostatistics, Epidemiology and Research Design Center, CTSI, Tufts Medical Center, Boston, Massachusetts, United States
| | - Ahsan Waqas
- Department of Anesthesiology, St. Elizabeth's Medical Center, Brighton, Massachusetts, United States
| | - Syed Basit Haider
- Departments of Anesthesiology, Pulmonary Critical Care Medicine and Surgical Critical Care Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts, United States
| | - Roman Schumann
- Department of Anesthesiology and Perioperative Medicine, Tufts University School of Medicine, West Roxbury, Massachusetts, United States.
| |
Collapse
|
19
|
The Effect of Washing of Stored Red Blood Cell Transfusion Units on Post Transfusion Recovery and Outcome in a Pneumosepsis Animal Model. Shock 2020; 54:794-801. [PMID: 32195920 DOI: 10.1097/shk.0000000000001535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Septic patients are often anemic, requiring red blood cell (RBC) transfusions. However, RBC transfusions are associated with organ injury. The mechanisms of RBC-induced organ injury are unknown, but increased clearance of donor RBCs from the circulation with trapping in the organs could play a role. We hypothesized that washing of RBCs prior to transfusion may reduce clearance and trapping of donor cells and thereby reduce organ injury. METHODS Sprague-Dawley rats were inoculated intratracheally with 10 colony-forming units (CFU) of Streptococcus pneumoniae or vehicle as a control and transfused with either a washed or standard (non-washed) biotinylated RBC transfusion from syngeneic rats. Controls received saline. Blood samples were taken directly after transfusion and at 24 h to calculate the 24 h post transfusion recovery (PTR). After sacrifice, flow cytometry was used to detect donor RBCs in organs and blood. The organs were histologically scored by a pathologist and CFUs in the lung and blood were counted. RESULTS The 24h-PTR was similar between healthy and pneumoseptic rats after a standard transfusion. In healthy rats, a washed transfusion resulted in a higher PTR and less accumulation of donor RBCs in the organs compared with a standard transfusion. However, during pneumonia, this effect of washing was not seen. Transfusion did not further augment lung injury induced by pneumonia, but washing decreased bacterial outgrowth in the lungs associated with reduced lung injury. CONCLUSION In healthy recipients, washing increased 24h-PTR of donor RBCs and decreased trapping in organs. In pneumoseptic rats, washing reduced bacterial outgrowth and lung injury, but did not improve PTR.
Collapse
|
20
|
Novel multimodal MRI and MicroCT imaging approach to quantify angiogenesis and 3D vascular architecture of biomaterials. Sci Rep 2019; 9:19474. [PMID: 31857617 PMCID: PMC6923434 DOI: 10.1038/s41598-019-55411-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Quantitative assessment of functional perfusion capacity and vessel architecture is critical when validating biomaterials for regenerative medicine purposes and requires high-tech analytical methods. Here, combining two clinically relevant imaging techniques, (magnetic resonance imaging; MRI and microcomputed tomography; MicroCT) and using the chorioallantoic membrane (CAM) assay, we present and validate a novel functional and morphological three-dimensional (3D) analysis strategy to study neovascularization in biomaterials relevant for bone regeneration. Using our new pump-assisted approach, the two scaffolds, Optimaix (laminar structure mimicking entities of the diaphysis) and DegraPol (highly porous resembling spongy bone), were shown to directly affect the architecture of the ingrowing neovasculature. Perfusion capacity (MRI) and total vessel volume (MicroCT) strongly correlated for both biomaterials, suggesting that our approach allows for a comprehensive evaluation of the vascularization pattern and efficiency of biomaterials. Being compliant with the 3R-principles (replacement, reduction and refinement), the well-established and easy-to-handle CAM model offers many advantages such as low costs, immune-incompetence and short experimental times with high-grade read-outs when compared to conventional animal models. Therefore, combined with our imaging-guided approach it represents a powerful tool to study angiogenesis in biomaterials.
Collapse
|
21
|
de la Harpe KM, Kondiah PPD, Choonara YE, Marimuthu T, du Toit LC, Pillay V. The Hemocompatibility of Nanoparticles: A Review of Cell-Nanoparticle Interactions and Hemostasis. Cells 2019; 8:E1209. [PMID: 31591302 PMCID: PMC6829615 DOI: 10.3390/cells8101209] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding cell-nanoparticle interactions is critical to developing effective nanosized drug delivery systems. Nanoparticles have already advanced the treatment of several challenging conditions including cancer and human immunodeficiency virus (HIV), yet still hold the potential to improve drug delivery to elusive target sites. Even though most nanoparticles will encounter blood at a certain stage of their transport through the body, the interactions between nanoparticles and blood cells is still poorly understood and the importance of evaluating nanoparticle hemocompatibility is vastly understated. In contrast to most review articles that look at the interference of nanoparticles with the intricate coagulation cascade, this review will explore nanoparticle hemocompatibility from a cellular angle. The most important functions of the three cellular components of blood, namely erythrocytes, platelets and leukocytes, in hemostasis are highlighted. The potential deleterious effects that nanoparticles can have on these cells are discussed and insight is provided into some of the complex mechanisms involved in nanoparticle-blood cell interactions. Throughout the review, emphasis is placed on the importance of undertaking thorough, all-inclusive hemocompatibility studies on newly engineered nanoparticles to facilitate their translation into clinical application.
Collapse
Affiliation(s)
- Kara M de la Harpe
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
22
|
Tezcan B, Bölükbaşı D, Şaylan A, Turan S, Yakın SS, Kazancı D, Özgök A, Yazıcıoğlu H. Effect of dilutional anemia that can be treated with only one unit of red blood cell transfusion on tissue oxygenation in cardiac surgery patients. Turk J Med Sci 2019; 49:1102-1108. [PMID: 31408294 PMCID: PMC7018202 DOI: 10.3906/sag-1901-213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background/aim Cardiac surgery, especially in the presence of cardiopulmonary bypass (CPB), is associated with an inflammatory reaction that may promote microcirculatory alterations, in addition to the general impact on system hemodynamics. Anemia and transfusion make patients more susceptible to the deleterious effects of CPB. In this study, it was aimed to evaluate the effect of dilutional anemia, which is caused by CPB and can be treated with 1–2 units of red blood cell (RBC) transfusion, on global tissue oxygenation parameters in cardiac surgery patients. Materials and methods This prospective observational study comprised 127 patients who had a relatively stable operation period without any major anesthetic or surgical complications (e.g., operation duration >5 h, bleeding or hemodilution requiring more than 1–2 units of RBCs, or unstable hemodynamics, requiring inotropic support of more than 5 µg/kg/min dopamine). Patients were observationally divided into two groups: minimally transfused (Group Tr) and nontransfused (Group NTr). Global tissue oxygenation parameters were evaluated after anesthesia induction (T1) and at the end of the operation (T3) and compared between the groups. Results Group Tr consisted of patients who had significantly lower preoperative hemoglobin values than Group NTr patients. The dilutional anemia of all Group Tr patients could be corrected with 1 unit of RBCs. The lactate levels at T3, increment rates of lactate, and venoarterial carbon dioxide pressure difference (ΔpCO2) levels [(T3 – T1) : T1] in Group Tr were significantly higher than those in Group NTr. Conclusion Dilutional anemia as a result of CPB mostly occurs in patients with borderline preoperative hemoglobin concentrations and its correction with RBC transfusion does not normalize the degree of microcirculatory and oxygenation problems, which the patients are already prone to because of the nature of CPB. Preventing dilutional anemia and transfusion, especially in patients with preoperative borderline hemoglobin levels, may therefore reduce the burden of impaired microcirculation-associated organ failure in on-pump cardiac surgery.
Collapse
Affiliation(s)
- Büşra Tezcan
- Department of Intensive Care, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Demet Bölükbaşı
- Department of Intensive Care, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Alev Şaylan
- Department of Anesthesiology and Reanimation, İstanbul Lütfi Kırdar Education and Research Hospital, İstanbul, Turkey
| | - Sema Turan
- Department of Intensive Care, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Sultan Sevim Yakın
- Department of Intensive Care, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Dilek Kazancı
- Department of Intensive Care, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Ayşegül Özgök
- Department of Anesthesiology and Reanimation, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Hija Yazıcıoğlu
- Department of Anesthesiology and Reanimation, Ministry of Health Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
23
|
Guruprasad P, Mannino RG, Caruso C, Zhang H, Josephson CD, Roback JD, Lam WA. Integrated automated particle tracking microfluidic enables high-throughput cell deformability cytometry for red cell disorders. Am J Hematol 2019; 94:189-199. [PMID: 30417938 DOI: 10.1002/ajh.25345] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022]
Abstract
Investigating individual red blood cells (RBCs) is critical to understanding hematologic diseases, as pathology often originates at the single-cell level. Many RBC disorders manifest in altered biophysical properties, such as deformability of RBCs. Due to limitations in current biophysical assays, there exists a need for high-throughput analysis of RBC deformability with single-cell resolution. To that end, we present a method that pairs a simple in vitro artificial microvasculature network system with an innovative MATLAB-based automated particle tracking program, allowing for high-throughput, single-cell deformability index (sDI) measurements of entire RBC populations. We apply our technology to quantify the sDI of RBCs from healthy volunteers, Sickle cell disease (SCD) patients, a transfusion-dependent beta thalassemia major patient, and in stored packed RBCs (pRBCs) that undergo storage lesion over 4 weeks. Moreover, our system can also measure cell size for each RBC, thereby enabling 2D analysis of cell deformability vs cell size with single cell resolution akin to flow cytometry. Our results demonstrate the clear existence of distinct biophysical RBC subpopulations with high interpatient variability in SCD as indicated by large magnitude skewness and kurtosis values of distribution, the "shifting" of sDI vs RBC size curves over transfusion cycles in beta thalassemia, and the appearance of low sDI RBC subpopulations within 4 days of pRBC storage. Overall, our system offers an inexpensive, convenient, and high-throughput method to gauge single RBC deformability and size for any RBC population and has the potential to aid in disease monitoring and transfusion guidelines for various RBC disorders.
Collapse
Affiliation(s)
- Puneeth Guruprasad
- Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta Georgia
| | - Robert G. Mannino
- Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta Georgia
- Aflac Cancer and Blood Disorder Center of Children's Healthcare of Atlanta, Department of Pediatrics; Emory University School of Medicine; Atlanta Georgia
| | - Christina Caruso
- Aflac Cancer and Blood Disorder Center of Children's Healthcare of Atlanta, Department of Pediatrics; Emory University School of Medicine; Atlanta Georgia
| | | | - Cassandra D. Josephson
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine, Center for Transfusion and Cellular Therapies; Atlanta Georgia
| | - John D. Roback
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine, Center for Transfusion and Cellular Therapies; Atlanta Georgia
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta Georgia
- Aflac Cancer and Blood Disorder Center of Children's Healthcare of Atlanta, Department of Pediatrics; Emory University School of Medicine; Atlanta Georgia
| |
Collapse
|
24
|
Tzounakas VL, Valsami SI, Kriebardis AG, Papassideri IS, Seghatchian J, Antonelou MH. Red cell transfusion in paediatric patients with thalassaemia and sickle cell disease: Current status, challenges and perspectives. Transfus Apher Sci 2018; 57:347-357. [PMID: 29880248 DOI: 10.1016/j.transci.2018.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notwithstanding the high safety level of the currently available blood for transfusion and the decreasing frequency of transfusion-related complications, administration of labile blood products to paediatric patients still poses unique challenges and considerations. The incidence of thalassaemia and sickle cell disease in the paediatric population may be high enough under specific racial and geographical contexts. Red cell transfusion is the cornerstone of β-thalassaemia treatment and one of the most effective ways to prevent or correct specific acute and chronic complications of sickle cell disease. However, this life-saving strategy comes with its own complications, such as additional iron overload, alloimmunization and haemolytic reactions, among others. In paediatrics, the dependency of the transfusion outcome upon disease and other recipient characteristics is more prominent compared with the adults, owing to differences in developmental maturity and physiology that render them more susceptible to common risks, exacerbate the host response to transfused cells, and modify the type or the clinical severity of the transfusion-related morbidity. The adverse branch of red cell transfusion is likely the overall effect of several factors acting synergistically to shape the clinical phenotype of this therapy, including inherent donor/blood unit variables, like antigenicity, red cell deformability and extracellular vesicles, as well as recipient variables, such as history of alloimmunization and inflammation level at time of transfusion. This review focuses on paediatric patients with β-thalassaemia and sickle cell disease as a recipient group with distinct transfusion-related characteristics, and introduces new concepts for consideration, not adequately studied and elucidated so far.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Serena I Valsami
- Department of Blood Transfusion, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G Kriebardis
- Department of Medical Laboratories, Technological and Educational Institute of Athens, Athens, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategy, London, UK.
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|