1
|
Samaja M, Ottolenghi S. The Oxygen Cascade from Atmosphere to Mitochondria as a Tool to Understand the (Mal)adaptation to Hypoxia. Int J Mol Sci 2023; 24:ijms24043670. [PMID: 36835089 PMCID: PMC9960749 DOI: 10.3390/ijms24043670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Hypoxia is a life-threatening challenge for about 1% of the world population, as well as a contributor to high morbidity and mortality scores in patients affected by various cardiopulmonary, hematological, and circulatory diseases. However, the adaptation to hypoxia represents a failure for a relevant portion of the cases as the pathways of potential adaptation often conflict with well-being and generate diseases that in certain areas of the world still afflict up to one-third of the populations living at altitude. To help understand the mechanisms of adaptation and maladaptation, this review examines the various steps of the oxygen cascade from the atmosphere to the mitochondria distinguishing the patterns related to physiological (i.e., due to altitude) and pathological (i.e., due to a pre-existing disease) hypoxia. The aim is to assess the ability of humans to adapt to hypoxia in a multidisciplinary approach that correlates the function of genes, molecules, and cells with the physiologic and pathological outcomes. We conclude that, in most cases, it is not hypoxia by itself that generates diseases, but rather the attempts to adapt to the hypoxia condition. This underlies the paradigm shift that when adaptation to hypoxia becomes excessive, it translates into maladaptation.
Collapse
Affiliation(s)
- Michele Samaja
- MAGI GROUP, San Felice del Benaco, 25010 Brescia, Italy
- Correspondence:
| | - Sara Ottolenghi
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| |
Collapse
|
2
|
Sun H, Li J, Wang Q, Li F, Zhang M, Su Y, Song M, Feng J. Kallikrein-related peptidase-8 (KLK8) aggravated hypoxia-induced right ventricular hypertrophy by targeting P38 MAPK/P53 signaling pathway. Tissue Cell 2022; 78:101874. [DOI: 10.1016/j.tice.2022.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
|
3
|
Reinero M, Beghetti M, Tozzi P, Segesser LKV, Samaja M, Milano G. Nitric Oxide-cGMP Pathway Modulation in an Experimental Model of Hypoxic Pulmonary Hypertension. J Cardiovasc Pharmacol Ther 2021; 26:665-676. [PMID: 33969747 PMCID: PMC8547238 DOI: 10.1177/10742484211014162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Manipulation of nitric oxide (NO) may enable control of progression and treatment of pulmonary hypertension (PH). Several approaches may modulate the NO-cGMP pathway in vivo. Here, we investigate the effectiveness of 3 modulatory sites: (i) the amount of l-arginine; (ii) the size of plasma NO stores that stimulate soluble guanylate cyclase; (iii) the conversion of cGMP into inactive 5′-GMP, with respect to hypoxia, to test the effectiveness of the treatments with respect to hypoxia-induced PH. Male rats (n = 80; 10/group) maintained in normoxic (21% O2) or hypoxic chambers (10% O2) for 14 days were subdivided in 4 sub-groups: placebo, l-arginine (20 mg/ml), the NO donor molsidomine (15 mg/kg in drinking water), and phoshodiesterase-5 inhibitor sildenafil (1.4 mg/kg in 0.3 ml saline, i.p.). Hypoxia depressed homeostasis and increased erythropoiesis, heart and right ventricle hypertrophy, myocardial fibrosis and apoptosis inducing pulmonary remodeling. Stimulating anyone of the 3 mechanisms that enhance the NO-cGMP pathway helped rescuing the functional and morphological changes in the cardiopulmonary system leading to improvement, sometimes normalization, of the pressures. None of the treatments affected the observed parameters in normoxia. Thus, the 3 modulatory sites are essentially similar in enhancing the NO-cGMP pathway, thereby attenuating the hypoxia-related effects that lead to pulmonary hypertension.
Collapse
Affiliation(s)
- Melanie Reinero
- Department Cœur-Vaisseaux, Cardiac Surgery Center, 30635University Hospital of Lausanne, Lausanne, Switzerland
| | - Maurice Beghetti
- Unité de Cardiologie Pédiatrique, 30538University Hospital of Geneva and Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique University of Geneva and Lausanne, Switzerland
| | - Piergiorgio Tozzi
- Department Cœur-Vaisseaux, Cardiac Surgery Center, 30635University Hospital of Lausanne, Lausanne, Switzerland
| | - Ludwig K von Segesser
- Department of Surgery and Anesthesiology, Cardio-Vascular Research, Lausanne, Switzerland
| | - Michele Samaja
- Department of Health Science, 9304University of Milano, Milan, Italy
| | - Giuseppina Milano
- Department Cœur-Vaisseaux, Cardiac Surgery Center, 30635University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Moccia F, Gerbino A, Lionetti V, Miragoli M, Munaron LM, Pagliaro P, Pasqua T, Penna C, Rocca C, Samaja M, Angelone T. COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. GeroScience 2020; 42:1021-1049. [PMID: 32430627 PMCID: PMC7237344 DOI: 10.1007/s11357-020-00198-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells following binding with the cell surface ACE2 receptors, thereby leading to coronavirus disease 2019 (COVID-19). SARS-CoV-2 causes viral pneumonia with additional extrapulmonary manifestations and major complications, including acute myocardial injury, arrhythmia, and shock mainly in elderly patients. Furthermore, patients with existing cardiovascular comorbidities, such as hypertension and coronary heart disease, have a worse clinical outcome following contraction of the viral illness. A striking feature of COVID-19 pandemics is the high incidence of fatalities in advanced aged patients: this might be due to the prevalence of frailty and cardiovascular disease increase with age due to endothelial dysfunction and loss of endogenous cardioprotective mechanisms. Although experimental evidence on this topic is still at its infancy, the aim of this position paper is to hypothesize and discuss more suggestive cellular and molecular mechanisms whereby SARS-CoV-2 may lead to detrimental consequences to the cardiovascular system. We will focus on aging, cytokine storm, NLRP3/inflammasome, hypoxemia, and air pollution, which is an emerging cardiovascular risk factor associated with rapid urbanization and globalization. We will finally discuss the impact of clinically available CV drugs on the clinical course of COVID-19 patients. Understanding the role played by SARS-CoV2 on the CV system is indeed mandatory to get further insights into COVID-19 pathogenesis and to design a therapeutic strategy of cardio-protection for frail patients.
Collapse
Affiliation(s)
- F Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - A Gerbino
- CNR-Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - V Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
- UOS Anesthesiology and Intensive Care Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy.
| | - M Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - L M Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - P Pagliaro
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy.
| | - T Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - C Penna
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - C Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - M Samaja
- Department of Health Science, University of Milano, Milan, Italy
| | - T Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| |
Collapse
|
5
|
Aljanabi MA, Alfaqih MA, Al-Khayat AMA, Bataineh HN. Sildenafil reverses the hypertrophy of mice right ventricle caused by hypoxia but does not reverse the changes in the myosin heavy chain isoforms. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2020; 12:79-87. [PMID: 32714496 PMCID: PMC7364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the effect of hypoxia and concomitant sildenafil treatment on MHC isoforms in hypoxia-induced hypertrophied right ventricles. Right ventricular hypertrophy was induced in mice by exposing them to hypoxic stimulus (11% ambient oxygen) in a normobaric chamber for 20 days. 45 mice were used in this study, distributed randomly into three groups: the first group served as a control (CO), the second group was exposed to hypoxia for 20 days without sildenafil treatment (HY), and the third group was given sildenafil orally at a dose of 30 mg.kg-1.day-1 plus exposure to hypoxia for 20 days (HS). Relative amounts of MHC isoforms were calculated using two ELISA kits containing antibodies against α and β MHC, and by SDS-PAGE. Compared with the CO group, the HY group showed a significant increase in right ventricle weight/left ventricle plus septum ratio (Fulton's ratio). The HS group showed a significant decrease in Fulton's ratio compared with the HY group, but not with the CO group. Expression of the MHC-β isoform was significantly increased in the HY group compared with the CO group. There was no significant difference in MHC-β between the HY group and the HS group. Plasma atrial natriuretic peptide level was significantly higher in HY group than HS group and did not return to normal after sildenafil treatment. Conclusion: sildenafil reversed the right ventricular hypertrophy induced by hypoxia but did not decrease the expression of MHC-β to normal levels.
Collapse
Affiliation(s)
- Mukhallad A Aljanabi
- Department of Physiology/Faculty of MEDICINE/Jordan University of Science and Technology P.O. Box 3030, Irbid 22110, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology/Faculty of MEDICINE/Jordan University of Science and Technology P.O. Box 3030, Irbid 22110, Jordan
| | - Anwar Mohammad A Al-Khayat
- Department of Physiology/Faculty of MEDICINE/Jordan University of Science and Technology P.O. Box 3030, Irbid 22110, Jordan
| | - Hameed N Bataineh
- Department of Physiology/Faculty of MEDICINE/Jordan University of Science and Technology P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
6
|
Nydegger C, Corno AF, von Segesser LK, Beghetti M, Samaja M, Milano G. Effects of PDE-5 Inhibition on the Cardiopulmonary System After 2 or 4 Weeks of Chronic Hypoxia. Cardiovasc Drugs Ther 2020; 33:407-414. [PMID: 31264002 PMCID: PMC6689028 DOI: 10.1007/s10557-019-06887-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Purpose In pulmonary hypertension (PH), hypoxia represents both an outcome and a cause of exacerbation. We addressed the question whether hypoxia adaptation might affect the mechanisms underlying PH alleviation through phosphodiesterase-5 (PDE5) inhibition. Methods Eight-week-old male Sprague-Dawley rats were divided into two groups depending on treatment (placebo or sildenafil, a drug inhibiting PDE5) and were exposed to hypoxia (10% O2) for 0 (t0, n = 9/10), 2 (t2, n = 5/5) or 4 (t4, n = 5/5) weeks. The rats were treated (0.3 mL i.p.) with either saline or sildenafil (1.4 mg/Kg per day). Results Two-week hypoxia changed the body weight (− 31% vs. − 27%, respectively, P = NS), blood hemoglobin (+ 25% vs. + 27%, P = NS) and nitrates+nitrites (+ 175% vs. + 261%, P = 0.007), right ventricle fibrosis (+ 814% vs. + 317%, P < 0.0001), right ventricle hypertrophy (+ 84% vs. + 49%, P = 0.007) and systolic pressure (+ 108% vs. + 41%, P = 0.001), pulmonary vessel density (+ 61% vs. + 46%, P = NS), and the frequency of small (< 50 µm wall thickness) vessels (+ 35% vs. + 13%, P = 0.0001). Most of these changes were maintained for 4-week hypoxia, except blood hemoglobin and right ventricle hypertrophy that continued increasing (+ 52% vs. + 42%, P = NS; and + 104% vs. + 83%, P = 0.04). To further assess these observations, small vessel frequency was found to be linearly related with the right ventricle-developed pressure independent of hypoxia duration. Conclusions Thus, although hypoxia adaptation is not yet accomplished after 4 weeks, PH alleviation by PDE5 inhibition might nevertheless provide an efficient strategy for the management of this disease.
Collapse
Affiliation(s)
- Coline Nydegger
- Department Cœur-Vaisseaux, Cardiac Surgery center, University Hospital of Lausanne, Lausanne, Switzerland
| | - Antonio F Corno
- Cardiovascular Research Center, University of Leicester, Leicester, UK
| | - Ludwig K von Segesser
- Cardiovascular Research Unit, University Hospital of Lausanne, Lausanne, Switzerland
| | - Maurice Beghetti
- Pediatric Cardiology Unit, University of Geneva, Geneva, Switzerland
- Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique, Children's University Hospitals, Geneva and Lausanne, Lausanne, Switzerland
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Giuseppina Milano
- Department Cœur-Vaisseaux, Cardiac Surgery center, University Hospital of Lausanne, Lausanne, Switzerland.
| |
Collapse
|